THE HUNGARIAN MILLENNIAL EXHIBITION, BUDAPEST, 1896.
(From our Special Commissioner.)
Revenons \dot{a} nos moutons and see what information may be gathered from a further inspection of the spacious machinery hall of the Hungarian Exhibition.
This hall houses part of Group IX., which consists of machinery, industrial and scientific instruments and

Fig. 1-section of thrashing machine made by the hungarian state engineering works
apparatus; in the first section there are 215 exhibitors, in the second section 55 . Of the 215 which may be taken as fairly representative of the industry in Hungary, the largest number of exhibitors in one class of machinery The one occupying a central position, with an imposing structure, and display of threshing machines, portable engines, and a varied and extensive show of smaller

FIg. 2-CIRCULAR SAW FOR FIREWOOD CUTTING
agricultural appliances, is the First Hungarian Agricultural Machine Manufactory Joint Stock Company. This company was founded in 1882, employs 800 hands with 150 -horse power, and produces some 3000 different machines yearly, of a value of one and a-half million florins, which are exported to the Balkan States. To the north of this xhibit is that of E. Kühne, of Monson, who shows loughs, harrows, rolls, plain and otherwise, and other soil preparing appliances; drills, and broadcasting seed sowers and manure distributors; hay rakes, tackle and ear for horse-power; dressing mills andriddles; and machines for preparing food.
Kühne's factory was started in 1856, and now employs 400 workers and 100 -horse steam power; exports to Austria, Roumania, and Servia, and has many patents for small points. On the other, the south side of the First Hungarian Company, is a similar show of appliances emanat ing from the firm of Mayer and Sons, who also show oil and wine presses With regard to these exhibits, they are emarkable for their diversity, thing almost primitive being found alongside most recent refinements and appli ances. A great feature, too, is the rading of the implements, so as to suit the requirements of the smallest armer or of the great landed pro rietors. Thus one finds little corndressing machines for hand -work larger ones for one-horse or two horses, up to 20 -horse steam-power threshing machines ; there is a great business in the smaller ones.
The best threshing machines are made at the State factory; they differ but slightly from the usual form, as will be seen from Fig. 1, which is a section of one of angle iron frame, upon which all the moving parts are supported, all bearings being spherical bearings ; all shafts are steel, and so is the drum, whilst the concave is wrought

Fig. 3-SECTION OF PORTABLE ENGINE FROM HUNGARIAN STATE WORKS

Measurements are given in millimetres, the measuremen the machine is made to
The price includes all spanners, small belting, chaf and zinc sieves of the two awners with which these machines are fitted, the extra straw sieve, wheel and side wedges, oil can, screws, iron supports, lengthening boards with wooden supports, three side boards, two chaff boards, straw boards, protecting boards for driver,
two small and one large ladders, shaft and trestles, and a two small and one
waterproof cover
waterproof cover.
The engines are either for wood or coal burning. Fig. 2 shows the arrangement of the wood-cutting saw, to which I have previously referred in The Engineer, July 17th, 1896, page 51. It is attached by means of a stirrup and screws to the back wheel of the engine, and is driven by a pulley keyed to the driving shaft; it is very portable, easily placed in condition for working, and delivers the cut wood just where it is wanted-all favourable points. The engines exhibited are in great variety, portable, also semi-portable, with cylindrical or rectangular fire-boxes, for straw, fed from above or below by hand or mechanically,
for sawdust, for wood or coal firing, simple or compound. for sawdust, for wood or coal firing, simple or compound.
Fig. 3 shows a section of a portable engine, with Fig. 3 shows a section of a portable engine, with
cylindrical fire-box, which I give as an example of the engines manufactured at the State works; it is for coal firing, but can be used with wood; the fire-box is a cor rugated iron tube, which, on account of its circular
section and great strength, requires no external stays. The grate has a somewhat sharp incline, and rests on a cast steel
inspection and cleaning manholes and mud cocks are provided on all sides. There is a spark-catching chamber with wire gauze diaphragms in front. The pressure fo a 9-H.P. engine is six atmospheres. The situation of the cylinder is at the back over the fire-box in the long axi of the boiler; there is a safety valve on the top of the cylinder and another near and connected by a little tub with the inside of the funnel. A slide valve worked by lever serves for starting or stopping. The crosshead is cast steel, the guide and supporting foot cast iron. The crank shaft is forged out of a single piece of Diosgyor steel, upon the excellence of which I have already expatiated. The chief bearings, which at the upper part incline inwards at an angle of 45 deg., are attached by screws and wedges to soft steel supports which are bolted to the boiler. The Tangye-Pickering governor is used. The feed pumpis fixed to a cast steel plate, is provided with bail valves, and can supply water at a temperature of
176 deg. Fah. The boiler plates are of Hungarian mild steel, and parts, otherwise of cast iron, or Diosgyör cast steel. The engine can be used either mounted on the usual carriage with iron wheels, or fixed on cast iron feet. Here are some particulars of engines of this type, dimensions in millimetres.

Boiler: Heating surface Grate area Number of smoke tubes Effective pressure
Engine: Diameter of cylind
Stroke
Fly-wheel diame
Fly-wheel face
orformance: Rev
Brake horse-power
Water per brake hor power and hour ...
Salg6-Tarján brown coal brake horse-power and h
Veight of empty engine
Length of mounted engine
th of mounted eng
Height of mounted en
Height of mounted eng
chimney
, port

Price includes firing implements, tube brushes, filling funnel, wedges, pre-heating tube, suction tube with rose, waterproof cover, spanners, hammer, three reserve gauge glasses, oil can, grease pot, shaft pole, two trestles, \&c. When taken as semi-portable, the wheels and axles, the shaft and trestles, and waterproof cover, are lent during the transit, but have to be returned.
Fig. 4 is an illustration of a 14 or 16 -horse power compound engine from the same factory, and is much of the particulars being, dimensions in millimetres:

Boiler: Heating surfaze	$\begin{aligned} & \text { 14-H. } \mathrm{H} . \mathrm{P} . \\ & 225 \mathrm{gq} . \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \text { 16-B.P. } \\ & 278 \mathrm{sq} . \mathrm{ft} . \end{aligned}$
Grate area	10.38 sq . ft....	Variable
Number of fire-tubes...	52	54
Effective pressure	10 atmos.	12 atmos.
Engine: Diameter of cylinder	$180: 270 \mathrm{~mm} \ldots$	200: 300 mm .
Stroke	360	360
Fly-wheel diameter	1800	1900
Fly-wheel face	200	230
Performance: Revs. per min.	140	140
Brake horse-power	36	50
power and hour	$27 \frac{1}{2} \mathrm{lb}$.	$25 \frac{1 \mathrm{lb}}{}$
Salg6 Tarján coal per brake		
horse-power and hour Weight of empty portable	6.82 lb .	6.31 lb .
engine	8 tons	9 tons 24 cwt.
Length of mounted portable engine	5000 mm .	5200 mm .
Width of mounted portable engine	2250 mm .	2350 mm .
Height ...	2200 mm .	2250 mm .
Height with chimney up	5000 mm .	5100 mm
Price, portable	$£ 46613 \mathrm{~s}$	$£ 569$ 3s.
Price, semi-portable ...	£441 13s. 4 d.	£552 10s.

The same conditions obtain with the compound as with the simple engine, in connection with the purchase as a portable engine. I should add, that there are about twenty exhibitors of corn and seed thresh. ing and dressing machines. Amongst these is Robey and Co., who exhibit threshing machines at the end of the hall; one of them, the Record, an invention of Mr. Harding, the manager of the Budapest branch establishment, is intended for the threshing, \&c., of clover and such like seeds. Fig. 5 is an illustration of this machine, and it performs all the operations of separating the pods from straw, shelling the pods, separating, cleaning, and sacking the seeds ready for market in the single machine. The material is fed as in the ordinary threshing machine, and the pods are detached from the straw by a peg drum a, and a peg concave b, the straw proceeds along shakers e e e, seeds, pods, \&c., falling through, drop into a shaking table f, and meet the materia coming through the concave on a riddle g, which separates short straw from the seeds and pods, and they fall into channel h that delivers them into a shelling drum c, and a shelling cylinder d. The shelled seed and pods are raised by an elevator i to the first dressing apparatus k, consisting of three sieves $1,2,3$, having a 3 in. recipro cating motion, actuated by a crank j, with a 3in. throw that also moves the shaking table f. A fan l supplie the necessary air for winnowing, and the partially cleaned seed resulting from this treatment is elevated by a smal elevator m into the second dressing apparatus n, con sisting of a series of fine sieves and a fan, from which the seed is delivered into sacks ready for market. In this case also the material has been duly considered, and the moving parts are supported on iron framework, the bearings being extra large, and lubricated automaticall with solid grease by means of a spring lubricating-box. For inspection and renewals or repairs all parts are placed in accessible positions. The machine presents a very good appearance, weighs 2 tons 16 cwt ., and is sold at $£ 14113 \mathrm{~s}$. 4 d . Of our manufacturers no others exhibit nevertheless, I noticed a few odds and ends by Clayton and Shuttleworth outside the Bosnian Industry Hall.

Although not represented in the Exhibition, I must not pass over the name of John Fowler and Co., whose position as makers of steam ploughs is as yet unassailed, and owing to the kindness of, and under the conduct of Mr . George Turner, I was enabled to visit their new offices and residences and shops at Kelenföld, a short but pleasant drive from Budapest, or accessible by train, the station being just in front of the offices and residences, which are in a handsome grey stone house, and the shops and store are of suitable proportions to house, erect, repair, \&c., the giants the firm create. I must say the visit was agreeable, for it made me feel that there was indeed nothing to be ashamed of in British work; the solidity and thoroughness of the construction, the way details are attended to, show that not alone is the work to be done well understood, but also that the machines are constructed to do that work, and not merely for show-a gratifying fact. There was one colossal machine there for turning a furrow 27 in . deep.
of the Nicholson Machinery Factory Joint Stengines of the Nicholson Machinery Factory Joint Stock Company leads me to the exhibitors of steam and other engines, about twenty in number, three showing petroleum and two gas engines. The Nicholson business was founded in 1870 . It employs 640 hands and 200 -horse power in steam engines, exports to Austria, Roumania, and Servia, turns over a million and a-half florins annually, and holds patents for steam engines, steam boilers, threshing machines, and sowing machines. In addition to an excellent agricultural exhibit, they have one 200 -horse power compound condensing horizontal engine, two 300 -horse power compound vertical engines, and a smaller
simple condensing vertical engine, all working at the elecsimple condensing vertical engine, all working at the electrical central station; whilst in the boiler-house they have in use a Simonis and Lanz steam boiler. Neighbours of Nicholson are the Schoenichen Hartmann Hungarian Ship, Machine, and Boiler Building Joint Stock Company, which exhibits marine engines at work, and contribute to the electric central and have a boiler at work. This firm was established in 1874, employs 1200 workpeople, and 210 -horse power in steam engines, exports to the East and Russia, and makes
annually, besides dredging machines, reservoirs, locks, annually, besides dredging machines, reservoirs, locks, and steam engines, five steamers, thirty-eight other
vessels, boats, and tugs, of a value of $1,200,000 \mathrm{fl}$. vessels, boats, and tugs, of a value of $1,200,000 \mathrm{fl}$.
Stefan Röck in the vicinity has a varied show, steam Stefan Rock in the vicinity has a varied show, steam
engines, boilers, cooling apparatus, and presses for bricks, engines, boilers, cooling apparatus, and presses for bricks,
tobacco, oil, and wine, engines and dynamos, has a tobacco, oil, and wine, engines and dynamos, has a
Cornish boiler at work, and an ice installation. But of Cornish boiler at work, and an ice installation. But of
all these, the "Danubius" Hungarian Ship and Machine all these, the "Danubius" Hungarian Ship and Machine
Construction Joint Stock Company makes the finest Construction Joint Stock Company makes the finest
exhibit. It has a Babcock and Wilcox and a exhibit. It has a Babcock and Wilcox and a
Tischbein boiler in the boiler house, a 350 -horse power compound marine engine, pumps, cement mills, petroleum refining apparatus, portable railway parts, bridges, and iron construction material. The iron construction of the machinery hall, of the Croatian Art
Gallery, and parts of another building are from this Gallery, and parts of another building are from this factory; it and some others also exhibit in Group X.-land and water communication. This company founded in 1890, employs 1000 workpeople and steam engines to 200 -horse power; exports parts of ships ${ }^{\text {b }}$ boier and machinery appliances to Roumania, Bulgaria, Servia, and Germany, turns over $2,200,000$ forins, and has patents for boilers and portable railways. L. Lang's machinery factory and foundry was started in 1868, and now gives occupation to 350 people, and steam engines to the extent of 50 -horse power; he exhibits steam engines, pumps, and steam superheaters. There is a Schmidt engine shown, and also a 200 -horse power triplex steam engine with condenser. I have already drawn attention to Eisele's boiler exhibit and the petroleum and gas engines, portable petroleum engines, \&c., of the First South Hungarian Machinery Company, a company started in 1894, and employing seventy workpeople and a $10-$ horse power semi-portable engine, producing from 60,000 to 80,000 florins worth of petroleum and gas engines, \&c. yearly.
Tools or machine tools or fittings are shown by fifteen exhibitors, to the most prominent of which I have already called attention. The Vulcan Company was founded in 1885, and employs 500 workpeople in Budapest and the same number in Vienna, besides 150 -horse power in steam engines; it exports machine tools and milling machinery to Austria, Bulgaria, Switzerland, Russia, India, and America. Hirsch and Frank, the other firm having a prominent show of machine tools, were established in 1882 , employ 250 people, make a yearly turnover of 300,000 florins, and export to the Balkan States and Austria; whilst the Waffen and Maschinenfabrik Company, founded in 1888, employ 1500 people and steam engines to 400 -horse power. The First Hungarian Screw-making Company, established in 1889, gives employment to 260 people, and uses 400 -horse power in steam engines, works up to 2500 tons of raw material, worth $£ 50,000$, and exhibits screws, parts of carriages, and railway constructions, and forgings. J. L. Brunner and Co. show parts of machines, carriages, both in wrought and cast iron, also scales; this firm was established in 1883, employs 130 people and 18-horse power mechanical, makes 5000 pairs of scales, and 300 tons of castings annually. There are some ten exhibitors showing pumps, and as many showing fire engines and spraying machines. The Budapest Pump and Machinery Factory Company makes a good show; it started in 1858 , employs
from 400 to 600 people and 130 -horse power in steam and from 400 to 600 people and 130 -horse power in steam and electrical engines, and exports to the East.

There are nine exhibitors of distilling and brewing appliances, five of soda-water machinery, Judging from the exhibits the millstone industry is of importance, there are some seven or eight exhibitors, one having by three firms, Ganz and Co. and Wörner and Co. being prominent. The former firm have such a varied and more particularly as I have had the opportunity of visit-
ing their works, which are of considerable interest, and will be noticed at the same time. The latter company was established in 1867, and has 500 workpeople and 100 -horse power in steam engines. There are also bicycle makers; Fuchs and Brigantig, founded in 1894, employ six people, make annually 150 machines, the "Hungaria " velocipede, worth $£ 1750$; another firm makes the Villam machine, Johann Puch and Co. make 600 machines a year, employ fifteen people, and started last year. There is nothing striking in these exhibits
Electrical things, beyond the Ganz exhibit, do not amount to much; although the Hungarian Electrical Company, started in 1893, gives employment to over 200
nental country to introduce the steam engine into its mines, the first being erected in 1722 by an English mechanic, Isaac Potter. Hungary also produced various inventors, but for the reason just given their inventions did not receive the necessary encouragement. However, in the census of 1880,4701 people are recorded as being engaged in the machinery industry, 2677 of whom were masters, there being only 2024 helpers; in the census of 1891 these numbers had risen to 3511 masters and 21,266 helpers. It is now estimated that the Budapest machine shops give employment to 22,300 workers at boiler and engine making, 1882 masters, 9354 work-

Fig. 4-16-H.P. COMPJUND PORTABLE ENGINE, HUNGARIAN STATE WORKS
people, has various establishments, having 3000-horse power in Budapest, 390 -horse power in Fiume, 300 -horse The value of the electric current produced in the first two establishments amounts to $£ 46,250$ a year; whilst the Electric Glow Lamp Factory Company, established in 1889, employs 200 people, 100 -horse power in steam £37,500, which are exported all over Europe, and to
people ; shipbuilding, 9 masters, 2600 men ; agricultural shops, 16 shops, 36 masters, 532 men ; railway repairing implements, 58 masters, and 363 men; tool forges and machine tool makers, 69 masters, 178 men forges and factories, 2 masters, 2147 men:-a screw factory with 183 men; and an arms factory with 46 men.

A further insight into the position of this industry in Hungary will be gathered from the following numbers,

ig. 5-CLOVER AND SEED THRASHER BY MESSRS. ROBEY AND CO.

America, India, China, and Japan; and the Accumulator Company, giving employment to twenty-five people, and using 20 -horse power in steam engines, and makes Tudor accumulators. Felten and Guilleaume started their Budapest works in 1896, employ 150 people,
and make a very fine display. It is rather surand make a very fine display. It is rather sur-
prising that milling machinery is not very promiprising that milling machinery is not very promi-
nent. There are only about four or five exhibitors; but, nent. There are only about four or five expecial milling exhibit. Ganz and Co. show sets of rollers; and of their vibrating screens, one I have already mentioned, the other I hope to get drawings of, and so will reserve remarks about it. Other small exhibits include saws, flax working implements, boring tools, tube cutters, tube cleaners, file making tools, gearing, belting, wool-dressing implements, button-making press, forge equipment, sausage machines, cooking appliances, boot cleaners, coffee roasters, washing machines, ventilators, sewing machines, and cement mills.
I have endeavoured in these remarks to convey some idea of the character and position of the machinery industry of Hungary as indicated by the exhibits under Group IX. It will be specially noted how very young most of the enterprises are, and, in fact, furnishes further evidence of the awakening of Hungary from its years of torpor, during which it was regarded as a producer of raw material, and not to be taken into consideration at all from an industrial point of view. It is note-
worthy, however, that Hungary was the first, conti-
which show the weight and value of the imports and exports of machinery:-

	Imports.		Exports.	
	Tons.	Pounds Sterling	Tons	Pounds Sterling
Locomotives, tenders, portable engines, motors, and hydraulic motors	3,398	175,862	523	23,233
Eleetric motors	105	4,392	148	6,175
Sewing machines and parts	1,670	167,050	114	12,892
Steam, horse, and hand threshing machines	3,490	118,529	485	16,475
Harvesters	234	15,607	16	1,060
Sowing machines ... \ldots.	767	43,183	33	1,795
Ploughs and parts, steam ploughs	2,915	121,233	680	25,862
Other agricultural machines	2,080	78,974	214	8,283
Looms	96	4,790	3	150
Pumps and fire engines	344	15,642	67	3,714
Book-printing and binding machines	170	13,056	51	3,572
Presses ...	160	6,011		329
Hand mills Cranes	108	4,508	115	6,714
Wood-working and metal-working machine tools	117	43,045	$6 \frac{1}{2}$ 79	217 3,965
Other machine tools	693	34,660	192	9,600
Parts of machines	21,207	795,278	4077	169,954
Vine cultivation machines...	$59{ }^{1}$	2,479	19	1,120
Scales	$393 \frac{1}{2}$	32,792	54	4,932
Torpedoes $. . . \quad .$.	-	-	150	125,000

The total value of the imports amounts to $£ 1,717,656$,
The total value of the imports amounts to $£ 1,717,656$
favour of the imports, confirming the view that I have
already expressed, namely, that Hungary still is a grea already expressed, namely, that Hungary still is a grea
consumer of the produce of foreign machinery shops and furnishes a market for good things.
In fact, during the last ten years the imports in the amounted only to 10 million florins, now to over
20 million, but at the same time the exports have
increased considerably from 35 million florins to increased
Turning now to the other section of Group IX., it is of weighing machines there are over a dozen exhibitors exhibitors, the rest being scientific and optical apparatus electrical objects, and such like. The watch and clock industry is of considerable importance, giving employamount of material imported under this head amounts to 346 tons, of a value of $£ 211,369$, including $28 \frac{1}{3}$ tons of watches, of a value of $£ 176,350$, whilst the exports
amount to 19 tons, worth $£ 31,333,3 \frac{1}{3}$ tons being watches, worth $£ 29,567$. The weighing machine industry came into existence in Hungary with the
custom of weighing wheat, and dates back to 1852 , when C. Schember and Sons started; they now employ fifty people and 10 -horse power in steam engines. They export to the Balkan States and hold various patents, weighbriages to chemical balances. The next firm chronologically considered, and which makes a good show, is that of G. Fuchs, dating from 1875; seventy to ninety workpeople are employed, and the machine tools require 4-horse power mechanical. The last considerable firm, from the significance of its exhibit or workmanship, is from the significance of its exhibit or workmanship, is to 140 people, and 45 -horse power in steam engines, shows weighing mashines; but its objects are not restricted to those alone. Anyway, these three firms make
a computed turnover of from about $£ 33,000$ to $£ 43,000$ a computed turnover of from about $£ 33,000$ to $£ 43,000$
annually. In astronomical, scientific, surgical, electrical, optical, photographic, telegraphic, telephonic, \&c., instrunents, and barometers, the imports exceed considermay see that there is also a home supply of these particular direction, in only one branch does the export ear any tangible relations and that is in electric lamps with $56 \frac{1}{2}$ tons of imports and $43 \frac{1}{2}$ tons of exports. It must, however, be remembered that inese are ail new to requition since the development of industries has rendered a home supply of scientific implements necessary. Watchmaking, however, is quite
an old Hungarian industry; but as may be gathered from the fact that there are so many istew and so few helpers, the Hungarian watchmaking is still only a handi-
craft, and so cannot enter into competition with countries making watches by machinery.

THE FRENCH MOTOR CARRIAGE RACE

So far as it has gone the mechanical carriage race now in progress from Paris to Marseilles and back has capabilities of the new vehicles. Taking the results of the first half of the journey, without any reference to the to be altogether satisfactory. Only eleven carriages out to be altogether satisfactory. Only eleven carriages out of this somewhat meagre result, it may well be doubted
whether the self-propelled vehicle has accomplished all whether the self-propelled vehicle has accomplished all
that was expected of it. But there are certain features of the contest that may probably tend to modify this unfavourable impression. In the first place, the competi-
tion organised by the Automobile Club of France was a tion organised by the Automobile Club of France was a
race pure and simple ; it was intended to test the speed of the vehicles without taking into account the more solid
qualities of economy, safety, and ease of handling, which are so essential to the seli-propelled carriage. It was the conditions of the trials, while others sought to draw the greatest profit from them by constructing vehicles specially for the race with very powerful motors.
As speed was everything, the competitors were little average rate of travelling of twenty miles an an which was accomplished the first day-cannot be kept up on the high roads without running serious risk of
accident. Then on the second and third
Ther accident. Then on the second and third days, the
weather was the worst that could have possibly been imagined for such a contest. A terrific gale blocked up the roads with trees and telegraph poles, and the accidents resulting from these obstructions, and the clogging-up of exposed machinery by the mud, thinned
out the ranks of the competitors considerably. It is thus out the ranks of the competitors considerably. It is thus hardly fair to accept the result as proving the inefficiency of all the vehicles which thus came to grief, as it is pretty certain that under less exceptional conditions some at least would have accomplished a creditable performance. Nevertheless, the race has shown up a great many
defects in the present types of mechanical carriages, and defects in the present types of mechanical carriages, and
has again proved, if proof were needed, that a carriage has again proved, if proof were needed, that a carriage is not suited for every condition of running, unless the
mechanism be thoroughly protected and raised well up out of the mud and dust.
The deplorable weather early in the contest is much
to be regretted, because it has deprived the trials of much of their technical interest. The race promised to resolve itself into a struggle between the old types of
vehicles and the new, that is to say, the perfected vertical motor and the horizontal engines with their improved gearing, which have been designed upon lines suggested by the previous trials. Of the former, the chief reprefour vehicles propelled by a powerful type of Daimler
motor, while the new carriages were run by Peugeot and zontal motor of their own invention; MM. Léon and Amedée Bollée, the former with hislight tandem vehicles the latter with a four-seated carriage propelled by a horizontal motor, and bevel-geared to the rear arivag
wheel, and M. Emile Mors, who likewise had a horizontal motor of his own invention. Apart from these carriages assembled on Thursday, September 24th, on the Place de 1'Arc deTriomphe, preparatory to
After the usual police formalitie
he carriages started for Veries had been gone through, large crowd of apectors, Most of in the presence of a the long and steep gradient at Suresnes in a satisfactory manner, though several of them had to stop a few another were stranded on the way, and had not reached Versailles when the starting signal was given. The Dion steam tractor, driven by Count de Dion himself, created an impression by dashing up the gradients at full speed, cult to see how this compromise between a traction engine and a locomotive can come under the category of self-propelled carriages, or that it is suited for any other purpose than that for which traction engines are usualiy tricyoles which had failed so conspicuously the previous Sunday in the bad weather, showed that they were capable of performing very satisfactorily under better vehicles again succumbed when the storms had made the roads heavy and muddy.
There were several thousands of spectators on the their long journey to Merseilles the venicles start on thay's stage was at Auxerre, where the vehicles had to put up for the night under official observation, to prevent any repairs being effected. In fact, competitors had to carry were entered as having completed the day's journey, they rigidly observed at the following stages; at Dijon, Lyons Avignon, and Marseilles ; and the times each day between give the time for the full distance of 1700 kiloms. After eren parts of the vehicle at Versailles, they were sent on their way by Count Henry de la Valette.
Some delay was caused by the first vehicle, belonging to M. Fisson, running over a man, but when it was found
that his injuries were not serious, the others were despatched at intervals of a minute. Altogether, there were thirty-two vehicles, belonging to the following
makers :-M. Fisson, of Paris; M.De la Haye, of Tours; makers :-M. Fisson, of Paris; M. De la Haye, of Tours;
the Maison Parisienne des Voitures Automobiles, Panhard and Levassor, Peugot et Cie., Count De Dion, Amedée Boilée, of Le Mans; Lebrun, of Paris Landry and Beyroux, of Paris; Rossell, of Lille ; TriouSche, of Paris; Leon Bollee, of Le Mans; Rochet and of Paris. There were twenty-seven petroleum carriages, ehicles, and five petroleum tricycles. All three of the steam vehicles were propelled by the Dion system o
generator, and in view of the almost entire abandonment of this power by the French mechanical carriage users,
the small proportion of steam vehicles in the race is not surprising.
Hardly had the last vehicle been sent on its way than
news arrived that the No. 5 Panhard and Levassor news arrived that the No. 5 Panhard and Levassor
carriage, with which the firm expected to win the race, had been stopped through the rubber tire slipping of
one of the wheels, and about an hour was lost in one of repairs. At first it looked as if the firss
effecting reald be an easy victory for the Dion
day's stage would day's stage would be an easy victory for the Dion
steam tractor, for this vehicle travelled at a remarksteam tractor, for a this vehicle travelled at a remark-
able rate until a litle beyond Melun, when it was stopped through the pneumatic tires puncturing. sidering the weight of the vehicle, the idea of
ploying air tires was peculiar, to say the least hey were damaged to such an extent that there was n
possible hope of repairing them. Count de Dion h possible hope of repairing them. Count de Dion had
therefore to give up the struggle, and it was only after infinite trouble that he succeeded in getting the cumbrous machine to the nearest town. The other steam carriage,
driven by Count de Chasseloup-Laubat, also came to driven by Count de Chasseloup-Laubat, also came to
grief through a defect in the mechanism, and several hours were spent in taking it to pieces and endeavouring to put it together again. Not one of the steam vehicles
was able to cover the first day's stage. This is somewhat nfortunate, as it tends to throw more discredit upo steam than is warranted. The vehicle to arrive first at
Auxerre was the tandem machine driven by M. Léon Bollée, which had covered the 178 kiloms. in the excellent time of 5 h .31 min . A Dion tricycle followed twenty minutes afterwards, and then came another
Bollée, with Delahaye, Panhard, and Levassor, and another Dion tricycle in that order, the others being a The way behind.
The Peugeot carriages were delayed several times by petitors considerable burners, which caused the com the vehicles were found to be entirely free from construc tional defects. Altogether twenty-seven vehicles reached following morning a violent gale afforded a very unpromi sing outlook for the competitors, and, with reports
coming in that the roads were blocked up by fallen trees, it was proposed at first to abandon the contest. To this however, the competitors would not agree, and the arrived the previous day. Very soon the soft and mudd roads told upon the low-down Bollée vehicles, which were obliged to stop through the mechanism becoming
clogged up and deranged by the mud. M. Léon Bollée, who had won so easily on the first stage, has made complaint to the committee to the ely introduced emery night someone had surre of his motor. Whether thi was so or not, it is a fact that the piston and some of the M. Arts were literally ground away. Tren the carross th road, and the four passengers were thrown a distance of 20 yards, though fortunately sustaining no serious injury carriage came to an even less inglorious end. It was being pushed up a gradient by the passengers, when, on arriving at the top, the gale of wind blew it backwards, and the passengers helplessly watched it go to its destruction in a colision with a tree. In fact, the trees were a constan Some of the vehicles were driven into the fields in order to get round the obstructions, and M. Delahaye lost couple of hours in cutting a way for his carriage through mechanical vo This was indeed a disasty-seven that left Auxerre in the morning sixteen only were able to reach Dijon, some of them several hours behind the first arrivals. The first four places were taken by Panhard and Levassor, of which the first covered the 151 kiloms. were scarcely less fovourable, for the rain still fell heavily ccompanied by a strong wind. On this stage likewise ew accidents took place, one of them of a serious character. The No. 7 Panhard carriage tried to avoid a wagon when passing through Villefranche, and in so the pavemen, when with a severe shaking, but the fourth was picked up with a broken ose and a wound on the forehead. Happily, it was found that the injuries were less dangerous than had been feared. The carriage was damaged, and apparently was not in a state to continue the race.
Notwithstanding the unfortunate weather, the leading vehicles accomplished a very good performance, and the kiloms, between Dijon and Lyons in 6 h .29 min ., followed lifference of no ehicles reached Lyons, and there was less than seven hours between the first and From this point the weath whe the tyons to Al, on was arom fishe fith erious accident than the overturning of the No. 5 Panhard and Levassor carriage, which had run into a tree in trying o avoid a dog. M. Levassor a dis companions were was intact; but it was decided, nevertheless, to give up the carri The first arrival at Avignon was the tro 16 Peageot h. 48 min ., followed a few minutes afterwards by a ouple of Dion tricycles. Thirteen competitors completed this stage, and the whole of them subsequently rrived at Marseilles, which was reached without any ncident of any kind. As the weather was fine, and the competitors were assisted by a strong wind, very fast
times were accomplished, and the No. 6 Panhard and ChJehiclo the 109 kiloms. in $3 \mathrm{h}$.6 min ., miles per hour. The first ten vehicles did the distance in less the isur hours. Adding the times for the first hal Panhard and Levassor and Peugeot. The vehicles are now returning by the same route, and will reach Paris on October 3rd.

THE REGULATION OF THE CATARACTS OF THE DANUBE-MAP OF THE IRONGATE ROCKS AND CANAL (For decription seo page 335)

Swain Emo

THE IRON GATES OF THE DANUBE.

Commenced nearly two thousand years ago, when Trajan and his armies went on their conquering expeditions, a navigable way has at last been made through the Prigrada rocks which constitute the Iron Gates of the Danube. It is not quite correct to say that Trajan com-
menced the work now completed from the modified designs of Paul Vazarhelyi, because the Roman canal evaded the great rocks, and made a small waterway sufficient for the boats towed along the river banks of what is now the Servian territory. These canal works are still existing as ruins, which give a good idea of the character of the utilitarian work possible even in the days of two thousand years ago. The canal made it possible to escape the Prigrada
channel narrows itself to 400 metres, but soon widens again, and at a distance of 70 kilometres the flow of the water is impeded by the Tzlas; the large and small rock banks of the Tachtalia, and the steep limestone walls of the mount Greben penetrating far into the channel, confine the water, and the effect is aggravated by great rock obstacles with their peaks passing through the main channel. The peak of the Greben narrows the channel of the river to 420 metres, and at a low-water mark, the bank of the Vrany rising opposite this channel, leaves a course of hardly 220 metres to the flow of the water. After passing the Greben, the channel enlarges rapidly to 2 kilometres, forming large and small islands and banks on this plateau.
The cataract of the Tzlas, Tachtália, Greben was,
at this cataract, at the lowest water level, reaches 2 metres per kilometre, while the depth of water, principally on the left shore of the channel, is only a few centimetres, so that at such times navigation is stopped. At high water this great cataract fall disappears entirely. This is caused by the straits of the Kazan, in a distance of about 14 and 100 kilometres from Báziás, which raises the surface of the water to such a degree that the cataract of Jucz is submerged, the flood water reacting at a great distance up stream, and equalising the great fall, so that the cataract of the Jucz forms a navigation hindrance only at low water.
Leaving the cataract Jucz, situated in the most southern part of Hungary, and descending 14 kilometres from it, a part is reached where the channel of the Danube is con-

LONGITUDINAL SECTION OF THE DANUBE FROM TURN SEVERIN TO BAZIAB-AND PLANB OF CATARACTS
ataracts. It commenced at the village of Sibb and was two miles in length. It formed part of the great monumental works constructed first under Tiberius and completed under Trajan, consisting of a riverside road and ow-path, much of which was constructed through very connected with the now nearly completed improvement of the Danube as a navigable way, by the removal of the rocks and peaks in the bed, and by regulating the flow at parts which have hitherto been dangerous cataracts, were fully described in our columns in articles by Mr. Bela von Gonda, Hungarian technical minister of inland communications, so that we need not here enter at length into the details of the work ${ }^{1}$ On page 342 we reproduce some of the engravings, showing the positions of the rocks in the waterway, and of the new and old training walls and canal cuttings. The engravings include a plan of the river from Verzsisk Potok to Milanovacz, and separate plans of other parts of the river in which the rock obstructions and the canal works are situated. The position of all these will be gathered readily from the section of the whole lenth gathered readiy from the section of the whole length several plans.
The Danube leaves the Hungarian plain at Báziás, and from this point-which, as the terminus of the TemesvárBáziás Railway, is the centre of the province-begins the Lower Danube proper with a number of cataracts hindering navigation.

Forty-four kilometres from Báziás the first hindrance is met, where the granite rock Gornya-Stenka penetrates with its steep peaks into the channel, forming the firstalthough unimportant-cataract, the Stenka, rendering the navigation difficult, and also restricting the flow of the river.
At a distance of 17 kilometres from this, the foot of the mountain turns toward the right shore, penetrating the channel in a downward bending direction, and the bank left shore, whence the rocks, with the prominent to the left shore, whence the rocks, with the prominent peaks of the Dojke, pass upward, forming a sharp tongue, and forcing the water in a nearly right-angular direction to the right shore, and narrowing the channel to 380 metres. The double peak of the Kozla-Dojke dams up the surface
of the water throughout a length of 1.86 miles, while of the water throughout a length of 1.86 miles, while the water falls proportionately on a short section-about
1 kilometre-above the cataract, the fall being 31.7 in . Sixty-nine kilometres from Báziás or Baziasch the
1 Tue Enaisier, vol. 1 xxviii., pp. 32, 84, 378, 463, 542; vol. 1xxvii.,
pp. $326,382,472,473,474,406,502$.
except the Iron Gate, the largest and most dangerous fined between steep and high rocks, forming the straits of obstacle to navigation, and not only at low-water mark, tion betw mand bound to struggle with the rapidly conging and is the water, which attack the bon changing great falls of side and another, and make piloting very difficult; but also at high-water, when the confined water of the channel, narrowed by the peak of the Greben, falls subsequently into the large channel, causing dangerous the Kazán, whi
ower Danube
The Danube runs between steep rocks with a width changing from 170 metres to 380 metres, and a depth from 20 metres to 50 metres, at a length of 4 kilometres till on the left shore the mountains retire, and in a length of $1 \frac{1}{2}$ kilometres the valley of Dubova puts an end to this narrowness. The channel of the river enlarges there to 500 metres, and its depth increases to 10 metres, till

THE DANUBE IMPROVEMENT CANAL WORKS-JUCZ CATARACT CANAL

whirlpools at the foot of the mountain. Here there is a the rocky mountains approach again with steep walls depth of about 30 metres, caused by the whirl of the reaching as far as the edge of the channel, which water during thousands of years, threatening the boats narrows again to $180-300$ metres. Its depth decreases with destruction when piloted thither by unpractised to $30-54$ metres; but the river again loses at Ogredena hands. Naturally it is impossible to navigate this part against the stream at high-water.
Leaving the Greben, there is still a length of 2 kilometres, which has not sufficient depth for navigation. At $11 \cdot 5$ kilometres from the peak of the Greben the high bank of serpentine passes through the channel and impedes the free flow of the water forming the cataract called Jucz." At low-water, the water drops with a great fall over the prominent peaks of this bank, and the fall
a distance of 9 kilometres, this restriction of its boundaries.
The straits of Kázán, although at high water they cause a considerable raising up of the water surface, do not form a hindrance, because, besides its great depth, the fall at the lowest water is only 36 centimetres per kilo. netre.
Coming out from the straits of the Kázân, the river turns towards the east, the mountains retire on the left
shore, and the channel of the river enlarges to $400-60$
metres. At 10 kilometres from the Kázan, on the right shore, is Tekia, a Servian town, opposite Orsova on the left shore, at the foot of the mountain forming the border between Hungary and the Lower Danube.
At a distance of 8 kilometres from Orsova, and 128
kilometres from Báziás, the "Iron Gate" kilometres from Báziás, the "Iron Gate" begins-see
engravings of plans and sections pages 334 and 335 . It
is situated between Roumania and Servia, and is, for a is situated between Roumania and Servia, and is, for a
length of 3 kilometres, the largest and most dangerous obstacle on the Lower Danube. The rocks, which pass
through the channel, impede the current, and begin at through the channel, impede the current, and begin at and the depth of water rises, at lowest water, from $7-18$
to $2-6$ metres, and this rock-bank extends in length to 8 kilometres, but forms a real cataract only in the part of 128-130 kilometres, partly by the rocks named Prigrada, rising above low water over a width of 250 metres and
length of 2 kilometres, beginning at the village of Sibb on the right shore and bending in a crooked line towards the left shore, partly by the numerous larger and smaller rocks and peaks rising on the left shore. This not only
slackens the current of the water and thereby raises the surface, but causes great and irregular waterfalls, cross currents, and whirlpools, which expose the passing ships, even with the greatest caution, to danger.
The cataract of the Iron Gate consists properly of three parts. The first is the entrance, viz., the bank, which
dams up the water, but has no peaks rising out of the water impeding the navigation; the second part is the Iron Gate proper, with the rock of Prigrada, with most
dangerous rock peaks; and, finally, the third part, the dangerous rock peaks; and, finally, the third part, the
great deepening below the Prigrada, where the water in falling over the rocks form whirlpools.
At different heights of the water the navigable way
takes different directions at the Iron Gate, in which the takes different directions at the Iron Gate, in which the
flow of the water follows through the most equal and the most favourable path among these peaks. The sailor
who directs his ship through this cataract, must know particularly the place and position of every rock, peak, particularly the place and position of every rock, peak, them. The greatest fall at the Iron Gate is at the lowest water, when the water-level falls over the rocks and
flows into the succeeding hollows; this fall in the river flows into the succeeding hollows; this fall in the river
is 3 metres per kilometre, through the whole cataract is 3 metres per kilometre, through the whole cataract
5 metres per 2.5 kilometres, and the velocity of the
water ranges between $4-5$ metres per second, or say 10 miles per hour.

After the cataract of the Iron Gate, the channel of the Danube is for a length of 6 kilometres crowded with rocks and banks, which afterwar
flows untroubled towards the sea.
flows untroubled towards the sea.
The eminent importance of the Danube-as a way of
communication - was well understood by the Romans when they made use of it with success as an expedient in their conquering wars. In view of this object they executed important works on the Danube, the ruins of
which even now excite admiration, showing us great which even now excite admiration, showing us great
technical knowledge and evidence of vast command of technical knowledge and evidence of vast command of
labour. Besides the numerous stone bridges, the parts
of which are the admirable work of the Latine architecof which are the admirable work of the Latine architec-
ture, they constructed along the river, from Regensture, they constructed along the river, from Regensassure the unhindered haulage of their boats. We find numerous and remarkable monumental remains of
hydraulic engineering and improvements, works of the hydraulic engineering and improvements, works of the
Roman reign on the Lower Danube; these ruins speak Roman reign on the Lower Danube ; these ruins speak
to-day of the intellectual and material power of these
conquerors of the world, who found their way surmounting all obstacles
At Ergeta castrum, as it was called at the time, in Mosia, downward from Turn Severin, the Roman Emperor Trajan caused to be built a large wooden bridge
on stone piers, parts of which are visible, after the on stone piers, parts of which are visible, after the
plans of Apollodorus Damaskus, in the year 102-103 B.C., that is to say, in the short period of one year, proving the great development of the technical ingenuity of that gate constructed in Rome glorifying the Emperor Trajan. The Bridge of Trajan is only the first of the great works with which the Romans rendered the unhindered fre
passage on the Lower Danube possible and assured. passage on the Lower Danube possible and assured.
The first cataract, which hindered their advance wards on the Danube, was the Iron Gate, which was
nearly inaccessible at low water. They were not capable of removing the rocks by th
means of that time, and therefore they were obliged to cu means of that time, and therefore they were obliged to cut right shore of the Iron Gate, constructing a canal with gigantic labour to the point where the cataract ends
near the village called Sibb, shown on the plan on page 334
The still existing remains of the wall of the channel Roman leaders of the time. This Roman canal-judg. ing from the ruins-led on to the right shore-see plan. ends of the canal was as much as possible diverted by a stone wall, the ruins of which are still visible in the channe
of the brook. But time removed and destroyed the
dykes of the canal, its channel was filled up by the dykes of the canal, its channel was filled up by the
detritus coming from the two valleys, and to day there are only ruins of the great work, which was intended to
break through the Iron Gate and to open the Lowe Danube to unhindered navigation. But how justly the Iron Gate, is proved by the fact that modern engineering with all its numerous expedients, proceeds on the Roman lines in avo
At the other cataracts we find no traces of Roman At the other cataracts we find no traces of Roman
attempts to surmount the hindrances by any works.
But this was not as necessary as at the Iron Gate, the draught, and the difficulties existed only in the haulage
To make the haulage of the ships possible, the Roman To make the haulage of the ships possible, the Roman
referred along the Lower Danube. This is the Way o Trajan along the right shore of the river. From the
remains of this work, which are still visible, some of remains of this work, which are still visible some of
which are shown at page 342 , may be judged how great
were the forces at command, and what immense work were the forces at command, and what immense work
this road required. At places where the channel of the this road required. At places where the channel of the
river is walled with rocks of immense height, the road is cut into the rocky walls, in some places in the form of
screen, but as they were not able to remove the rocks and screen, but as they were not able to remove the rocks and
to construct the whole road in this manner, they built a part of it on beams, let into the rock wall and forming a
cantilever roadway, as can be seen even today from the cantilever roadway, as can be seen even to-day from the
The Way of Trajan was begun by the Emperor Tiberius,
and the Emperor Traian continued and finished it in and the Emperor Trajan continued and finished it in
A.D. 103 with the aid of the Fourth Scythian and the Fifth Macedonian legions.
The completion of this magnificent work was eternal.
ised by the Romans with three commemorative tablets. ised by the comans with three commemorative tablets.
These are cut into the wall on the shore, within incised surroundings adorned with fine relievos, of which some parts are still quite visible on the Table of Trajan-se
page 342 -in the Straits of With the decay of the Roman
Danube lost for a long time its former pire the Lower migration of people caused the decay of the great creations of the Latin races: and after long centuries
the Lower Danube became the scene of heovy strues against the Turks, and many fortifications have been built there in order to impede the advance of the hostile army.
The
These forts are, however, now of the past, as was seen the other day by those who were present at the forma inaugural ceremony, when they passed the picturesque
island of Ada Kaleh, which is still Turkish territory though under Austrian administration. On board it was
strange sight From the inland, the Turkish crescent flag was flying; but much larger and more imposing was the Austrian Imperial larger and more imposing was the Austrian Imperial
standard floating from the shore. The company o soldiers drawn up to salute the Monarchs were Austrian but there were Turks as well, male and female, seated on
the the ground, melancholy survivals of Ottoman sovereignty
on the Danube. The ruins of the fortress, the dilapi dated houses in the background, were an epitome of the present condition of Turkey, hemmed in, and destined ere long to bo supplanted in Europe. Sixty-two years ago, when Count stephen Szecsenyi, on board the Argo
ventured ventured on the first thanube trip of modern times fron
the Kazan Pass to the mouth of the river, he had to the Kazan Pass to the mouth of the river, he had to
ask permission of the Pachas of New Orsova, Widdin, Rustchuk, and other places. For long afterwards every
thing visible on the Danube below Orsova was Turkish thing visible on the Danube betow Orsova was Turkish.
On the right bank it is now either Servian or Bulgarian, and on the left Roumanian, as far as the Black Sea.
When the Turks were finally reppulsed to the Balkan peninsula, and the reign of Napoleon came to an end
when the war alarms ceased, and peaceful times came again, the attention of the Governments and Statesmen was directed again to the question of the improvement defined in 1816 the topographical and hydrographical plan of the Danube, with reference to the frontier of the special bureau was established under the supervision of the Board of Public Works. But the surveys were begun only in 1823, and finished in 1838. These surveys embraced the study of all circumstances referring to the channel of the river and the current, and were executed
so precisely and conscientiously, that they are still now the pride of the Hungarian hydrotechnics. On the basi of these surveys particular plans were elaborated for the
uniform regulation of the Dannbe; but these plans were uniform regulat.
With a view to these regulation works for rendering the cataracts of the Lower Danube navigable, the Hungarian Government, through Gabriel Baross, the Minister of Public Works and Communications of that time, pre-
sented in 1888 to the Legislature the general projects and sented in 1888 to the Legislature the general projects and estimates of the necessary regulation works. In consequence it was decided by the XXVI. Law of 1888, that the works, exercising the right of levying customs temporarily, such right being conferred upon it by the LVII. Art. of the Berlin Treaty of 1878, and the VI. Art. of the London treaty executed the 13 th March, 1871 . The law states, that the Minister of Public Works has to execute the above-mentioned works on the basis of the projects such dispositions as may be necessary in the interest of the successful execution of the works, and for their conservation and administration. The cost of the workswith the proportions to be paid during progress, at nine million florins. By the law the Minister of Public the Minister of Finance, the time and the way of levying the customs which Hungary will have the right to charge in virtue of the LVII. Art. of the Berlin Treaty on
The largest part of the regulation works extending into the territory of Servia, the first thing necessary was to uninterrupted movement of men and materials.
soon as this was done, the Minister of Commerce organised a technical bureau for surveying and controlling Orsova, and was constituted in the following manner:Chief of the Bureau, Ernest Wallandt, ministerial council lor ; assistant, Alois Hoszpotzky, chief engineer; mem bers: Ernest Jzsaky, ministerial engineer; Eugène
Gruber, and George Kherndl, royal engineers. Later the
minister delegated Francis Herbert captain of engineers.
The so organised technical bureau had at first to
elaborate the particular plans, and to study the hydro elaborate the particular plans, and to study the hydro:
graphical condition of the section which was to be regu-
lated. At the same time the minister
as to the modus and means to be employed in the most difficult part of the work, viz., the blasting of the rock ander the water in the open river. He proposed to give the water, and for the best systems with which the re moval of the rocks under the water could be executed with success. The offers presented were put before special commission, which examined the explosives and made several experiments on the spot. Moreover, the
minister sent Mr. Béla Gonda-technical councillor and minister sent Mr. Béla Gonda-technical councillor and
reporter of the Iron Gate works on behalf of the ministry reporter of the Iron Gate works on behalf of the ministry
-and Mr. Alois Hoszpotzky-chief engineer and assis tant of the technical bureau-to Bingerloch in order
to study the works of blasting which were in exesution. to study the works of blasting which were in exesution
The result of this was a report, which contributed much to settle the lines on which the practical execution of the works should proceed.
After a careful study of the nature of the works and modes of execution, the minister was convinced that it would be the best to execute this heavy work by contract On the 5th December, 1889, he opened a public competition, and the advertisement in question was published on the Continent and abroad, and the plans and stipulations were put at the disposition of foreign at 31st March, 1890, so that the competitors had four months to study the plans and the local conditions.
During this time the technical bureau finished the new survey and the elaboration of the plans, which were to form a completing part of the contract.
Moreover a great and difficult task was to be solved had to re deginning of the work; the technical bureau fixed points, and low-water marks, which the engineer Paul Vásárhelyi, the author of the first plans of regula tions, had fixed.
On the 31st March, 1890, four contractors presented part of the works, and the two others demanded only a tant prices, so that their tenders could not be accepted; but after long negotiations, one of the syndicates offered In accomplish the proposed works for nine million florins. In consequence of this, on the 22nd May, 1890, the final Hajdu, Hungarian hydro-technical engineer; Hugo Hajdu, Hungarian hydro-technical engineer; Hugo Luther, manufacturer at Braunschweig, and the Berlin undertook to finish the whole work by the 31st undertook to finish the whole work by the 31st
December, 1895. It was stipulated that the syndicate should begin the works within two months. The conmen in and 17th June, and began them on the 18th September, 1890
To commemorate this latter day the contractors cut a nemorial table in the rock wall on the Hungarian shore, over the rock Alibeg, with the following inscription:-
"These works, sanctioned by the XXVI. law of 1888 , and destined to remove the navigation hindrances at the Iron Gate and other cataracts, were begun in the reign of the Hungarian King, Francis Joseph I., in the time of the Prime Minister, Count Julius Szapàry, by the Minister of Commerce, Gabriel Baross de Bellus, on the
15th September, 1890.-God bless this work and its creators.
Well, the great project has now been completed, at least so far as all the formidable operations are concerned, Sunday morning last by the Emparmally inaugurated on Sunday morning last by the Emperor Francis Joseph, who traversed its entire length in company with King Charles of Roumania and King Alexander of Servia. The approaches to the Canal on either side are, however,
not yet excavated from the rock, to allow passage at low not yet excavated from the rock, to allow passage at low
water. Not until the spring of 1899 will vessels be able water. Not until the spring of 1899 will vessels be able by that time also the harbour at Orsova for reloading will be completed. It was, indeed, only owing to the fact that the Danube is higher this autumn than it has been since 1860 that Sunday's ceremony was possible at all.
In a year or year and a-half the whole of the works time $18,600,000$ exted, have been carried out, and by that the estimates, for the regulation of the Lower Danube between Old Moldova and Turn-Severin. Steamers drawing 4 metres, or $13 \cdot 14 \mathrm{ft}$., coming from the Black Sea, viá Braila or Galatz, will then be able to go up the river without any hindrance to Orsova, where the cargo can be transferred to the railway; or, if drawing only 3 metres, still further up, to Buda-Pesth and Vienna. For the present only the passage from the Lower Danube up Orsova, and vice versá, wull be independent of the material, destruction, or even damaging, by high water or floods, is impossible, and vessels which draw $13 \cdot 14 \mathrm{ft}$. -namely 4 metres-will be able to pass all the year round. The canal is 80 metres, or 262.4 ft . wide at the bottom, against the 27 metres of the Suez Canal, and the 32 of the Emperor William Canal. The Iron Gate Canal alone cost $5 \frac{1}{2}$ million florins, or more than the fourth part of the entire cost of one of the whole works. One million kilogrammes, or 1000 tons, of dynamite were hands were continually employed. Hungary is proud of this gigantic work, and may well be, for its value in trade and commerce, and in international intercourse, will be great indeed. We regret the death of M. Gabriel Baross, the Hungarian Minister of Commerce, who, as above mentioned, had so much to do with this work, but we congratulate M. Bela von Gonda and M. Ernst von days ago bestowed upon them.
Binkize
H.M.S. FIRST-CLASS CRUISER POWERFUL.

As the heavy ironclads which had been added to the Navy just previous to the submission of the Naval Programme of 1889 to Parliament were a class of ships quite incapable of defending our commerce of the country or of saving us from depredations at sea, it was decided after much discussion that what was wanted for the purpose was swift and powerful vessels capable of keeping the sea, of convoying a leet distant parts without recoaling. Of such vessels, the pro gramme referred to proposed to build several, to be henceforth known as "protected cruisers." Many such vessels, ranging from 3000 to 8000 tons displacement, have already been constructed, and added to our Navy, all of them built from the designs of Sir W. H. White
to the penetration of projectiles ; the resisting power of the usually-fitted belt being added to the normal strength the d
The Powerful, whose construction was commenced early in 1894, is of the following principal dimensions :Length between perpendiculars, 500 ft .; over all, 538 ft . She has a beam of 71 ft ., and at her load draught of 27 ft . she displaced about 14,250 tons. She is composed entirely of steel, with the exception of her stem, stern, and rudder frames, which are of phosphor bronze, these
latter being heavy castings, totalling some 50 tons in latter be
In the hull proper, great pains have been taken by a skilful disposition of the material to obtain extreme lightness, combined with great strength and rigidity. The vesse upper and boat decks. The protective or armoured deck

transverre sectional elevation of the engines of h.m.s. powerful

Chief Naval Constructor. On the completion of the vessels of this type ordered in 1889, it was considered advisable by the naval administration of the country, in view of any possible naval conflict with a foreign Power, that more ships of this class should be built, but of much greater power and speed and coal endurance.
In the Navy Estimates of $1898-94$ provision was made for the construction of two cruisers--the Powerful and the Terrible-which were to be the largest, swiftest, and most powerful vessels of the class ever built. The designs of these were at once put in hand, and tenders invited for their construction. Of those submitted, that of the Naval Construction and Armaments Company, Barrow-in Furness, for the Powerful, was accepted; the building of the sister-ship being entrusted to Messrs. J. and G. Thomson, of Clyde Bank, Glasgow. As the Powerful is will be the first of the twinery with that of her propelling machinery, equipment, \&c., ma be given here. It will equally apply to both vessels.
As some departure has been made in her construction from that of previous vessels of the same class, she practically becomes a new type of cruiser, in that all side protection is dispensed with, and in its place is substiproted an armoured deck, which offers powerful resistance
runs the whole length of the ship, and is of great strength, being 4 in . at its thickest part, tapering to 3 in . at the ends, and is made of three thicknesses of steel plate This deck dips at the ship's sides 7 ft . below the load water-line, and rises 3 ft . 6in. above it on the middle line thus giving 10 ft . 6 in . of camber, and enabling the tops of the engine cylinders to come under it without resorting to armoured engine hatch coamings, as in some late cruisers. By adopting this design of protective deck a good depth and breadth of coal armour is provided on both sides of the ship. The vessel has no external keel, and is structurally built on the bracketed system. Being intended to keep the sea, the hull is sheathed with teak and coppered. Heavy bilge keels, 224 ft . long, are fitted on each side, and are metal sheathed, The rudder which is on the balanced principle, is some 15 tons in weight and of large area.
The ship internally is divided into compartments by numerous transverse water-tight bulkheads; 240 ft . of the middle length of the vessel is occupied by the machinery space, which is divided up into ten compartments, two remainder to the boilers; a longitudinal middle line bulk head running through the whole of this length.
Between the armoured protective deck and the one
above it-the main deck-the whole of the 240 ft . of length is divided up by numerous water-tight bulkheads into coal bunkers, which, when filled, form a coal protec tion for the whole of the machinery space, the horizontal thickness of coal being between 9 ft . and 10 ft . As we intend in subsequent issues to give further constructive details of the vessel, and of her propelling and auxiliary machinery, we shall now briefly describe the main engines, and also note the kind of boilers with which the vessel is fitted, and which we illustrate in detail on page 338.
The propelling machinery of the ship consists of two independent sets of inverted four-cylinder triple-expansion engines, driving four cranks, designed to develope about 25,000 -indicated horse-power when running at about 110 revolutions per minute, with 210 lb . steam pressure at the engines. The sequence of the cylinders is, on high-pressure, one intermediate pressure, and two low pressure, as shown in our engraving. Each engine has two air pumps, one worked off the high-pressure cylinder crosshead and the others from the forward low-pressure crosshead, and a separate main condenser.
The boilers supplying the engines with steam, which are 48 in . in number, are of the Belleville water-tube type and are located in eight separate water-tight compart ments or boiler rooms, which are all forward of the engines.

We give on page 338 views of two of these boilers, but as we intend in a subsequent issue to describe their con with the details, and fully report the results obtaine to them when under trial, we defer further rete the their working pressure is 260 lb . per square inch, reduced at the high-pressure cylinder to 210 lb . The total fire grate area is 2200 square feet, and the total heating surface 67,800 square feet.
H.M.S. Cruiser Powerful is at present unJergoing an exhaustive series of trials in the English Channel. The bad weather last week occasioned a postponement of the having to return to Spithdicated horse-power, the shi hours' running owing to the gale then blowing. She did not rain get under weigh till the following Monday morning the 28th ult, fresh thirty hours' run bein started at about 945 . The fter sixteen boilers onl were used. The following averages were obtained Steam in boilers, 225 lb .

Vacuum Revolutio
 Mean pressures- High-pressure
 Intermediate cylinder
 First low-pressure cylinder. Second low-pressure cylinder
 Indicated horse-power-- High-pressure cylinder.
 High-pressure cylinder. Intermediate cylinder
 First low-pressure cylinder. Scond low-pressure cylinder

Collective indicated horse-power

Speed, $14 \cdot 0$ knots for 27 hours ; coal consumption per indicated horse-power per hour, 2.07 lb . for thirty hours Next week we shall give further particulars, togethe horse-power, whe thirty hours run at 18,000 in Friday and Saturday, the 2nd and 3rd inst. So far the Belleville boilers have given every satisfaction the pressure bein uniformly maintained, and no trouble whatever was experienced with the feed. The stoking seemed easy for the men, who have, of course, benefited by their previous experience in the sister cruiser Terrible The preditions of weather on Mondsy and Tuesday were throughout most favourable. A few runs were made over the most fared mile in Stoke w the were made over the 5200 -horse power and the ship enging $15 \cdot 3$ knots with the tide power and the ship math these reversed the speed was lessened by two knots. The reversal Construction officers on board can, so far, certainly be congratulated officers on board can, so far, certaily be congatuled Admiralty in taking this bold departure in marine engineering were fully justified.

Munsted's Margabine Factory,-In the article on these works in our impression of the 18th inst, page 292, the word the in line ten of should have been engincs. Mr. Schon writes to the word engine condensers referred to save from 85 per cent. to 90 per cent. of the water used by the old form of submerged condensers, not that they
use 85 per cent. to 90 per cent. use 85 per cent. to 90 per cent.
Trade and Business Announcements.-We are informed by Messrs. Woods and Co., Suffolk Irownworks, Stowmarket, that on and after September 28th Mr. Ernest William Gouldstone will
become manager, and that Mr. Clement Woods, on the same date will cease to act as the representative of the firm.-Mr. John T. Eayrs, M. Inst. C.E., F.S.I., Past-President of the Association of Municipal and County Engineers, has opened offices at Clarence Chambers, 39, Corporation-street, Birmingham.-Messrs, Richard Nevill and Co., Limited, of the Wern Engineering Works, Llanelly,
have secured the order for the reversing mill engines for the have secured the order for the reversing mill engines for the new
stoel works at Llanelly.-Messrs. James Menries and Co change of address from 6, Lime Street-square, to 4, Fenchurchavenue, London, E.C.-Mr. T. E. Stanton has been appointedsubject to the confirmation of the senate and council-senior lecturer in Engineering in University College, Liverpool, in the place of Mr. Stanley Dunkerley, who has gone to Cambridge. It sstated that the new lecturer served four years' apprenticeship
with Messrs. Gimson and Co., engineers, of Leicester entered the Gimson and Co., engineers, of Leicester. In 1888 he obtaining a Whitworth Exhibition in 1890. He graduated at the Victoria University with a First Class in Honours in the B. Sc. Degree, gaining the Fairbairn Prize at Owens College. He ba since taken his Degree of M.Se., and has been elected an Associate Member of the Institution of Civil Engineers. He was appointed
in 1891 Junior Demonstrator, and in 1893 Senior Demonstrator at Owens College, which post he has retained up to the present time -The offices of La Locomotion Automobile have been moved to Place de la Madeleine, Rue Chauveau-Lagarde, 4, Paris. - Mr. Andrew Kesson having retired, we are requested to, state that the firm of Keeson and Campbell, engineers and ironfounders, of Green field, Hamilton and Parkhead, Glasgow, will continue their busi-

BELLEVILLE BOILER AND FITTINGS-H.M.S. POWERFUL
(For description see paoe 337)

H. M.S. P O, W E R F U L A T S EA

(For description see page 337)

ETTERS TO THE EDITOR

(We do not hold ourselves responsible for the opinions of our correspondents.)

A LiNk in locomotive history.
$\mathrm{Sm},-1$ enclose you views of an old-world locomotive whose Sris, - enclose you views of an old-world locionotive whose
career has just ended, thinking you may consider it worth a passing notice.
Bailt in the forties under the late Mr. James Thompson at Kirk house, in Camberland, her life was spent in the useful but unexciting occupation of drawing coal trains along the Midgeholme Colliery line, the same, by the way, over which tradition declares (As to this latter performance I admit) to feeling somewhat scep. tical, but if it really was accomplishedjit deserves to rank amongst the most remarkably things in railway history.)
After running for nearly forty years her work as a locomotive came to ane end in the winter of 18855.6 , When the stationary engine plant at
a pit being in urgent need of assist. a pit being in urgent need of assist.
ance, she was jacked up and uncoupled, grooves were cut in the driving wheel tires and wire ropes passed round them, and she ther the closing of the pit a few months ago. Shas now been broken up. The boiler is to be preserved, and will probably serve a nseful purpose for goes to the scrap heap. The following were her principal dimensions:-
Cylinders
Boiler-length of barreel 1 1ift. . by 10 in.
Din. Dianeterer of barrel
Thickness of plates Tubes Dinmester of tübees

The driving wheels bad no flanger. The working pressare was, 1 believe.
orivinally 100 lb, but did not exceed originally 100 lb , but did not exceed
80 lb, at any time to which my own memory extends. The boiler was made of five plates, each extending its whole longth, and lap, jointed longitudinaly. No provision thas made for expansive working, there reversing lever could be fixed, ono
for forward and one for backward for forward and one for backward gear. Unfortunately the driving
wheels and smoke-box door had been removed before tho photographs were taken. capable of taking loads which I daresay would have surprised many people accustomed to modern practice

September 29th.
w. B. Thompson.
gas v. blectric traction for sheffielir,
Sta,-As The Exanerre-current issue-apparently favours a sugg, stion by Sir F. Mappin to employ gas for tramway traction
in S seffield, permit a brief statement of facts in favour of the rival me bods electricity and cable, and to suggest that whilst gas, on th s score of cost, " may be " admissible in the ozone-laden atmo
sphere of Blackpool, the case is different in Sheffild. A view sphere of Blackpool, the case is different in Sheffield. A view
tersely put by "Arcturus" in the Sheffield Telegraph deals with tersely put by "Areturus is the Sheflied Teclegraph deals with vitiate so much air, and this vitiated air has to bo discharged in the street, and the quantity of exhausted or vitiated air from
which our atmosphere now suffers is a sorious drawback to

OLD LOCOMOTIVE, MIDGEHOLME COLLIERY

exis

Sir it is obvious the sole adrantage which even the cheap as supply of Sheffield offers for traction is a problematical difference in mileage cost compared with electricty produced under ordinary conditions, and 1 hope to show clearly this advantage, whatever it city an opportunity to ditions by a simple combination of process and reduction of cost at present incurred for municipal work, basing the proposition on the valuable facts regarding refuse disposal determined at Leeds by Dr. Spottiswood Cameron, the Medical Officer of Health, brietly as follows :- (1) All forms of nuisances cease with destruc-
tion carriod on at a heat at or above 1500 deg.
(2) weight of refuse is reduced at 2000 deg. compared with 1500 deg. (3) The maximum heat available with steam jets or forced draught with cold air is 1500 deg. (4) The weirht of clinker or residue at
1500 deg. ranges from 35 per cent. to 40 per cent. (5) The cost of
destraction at 1500 deg. is for wages 1952 , or, including capital charge at 4 per cent., 24.64 pence per ton of refuse, or about the average cost of tip disposal. From the above facts resulting from
burning upwards of 180,000 tons of refuse, it is clear the question of nuisance, cost of collection, cost and quantity of disposal, and weight of clinker, are one and all dependent on the degree of beat employed.
Sheffield is erecting a destructor plant at a cost of $£ 16,000$ inclusive, which will not reduce present cost any way, and in view form of mectanially ins direction soon, my proposition takes the regenerator plant to utilise the waste gases from the boiler plant producing power for electric or cable traction ; the steam plant at alone would supply the cell atmosphere the chimney. The gases 1200 deg. to 1500 deg.; the regenerator supplying hot blast to work the cells. Consequently it would be much simpler and easier ordinary cell cells at 1500 deg with. to 2500 deg., than it is to work th,
cold air in the usual way. The labour would be reduced 50 pe cent. to 75 per cent, whilst owing to the simpler form of plan and its cost, and area required, destruction relieves electricity of the cost of chimney, and flue, and boiler plant as well, compared with either tip or destructor disposal in the usual way. The general financial aspect of the mileage cost of either electric gas for Sheffield is seen from the following illustration drawn from the city accounts for 1895, viz, the present cost for refuse disposal by the tips on the city outskirts added to sludge disposal cost i roughly $£ 27,000$ per annum, which is diverted to the combinatio proposed, carried out at E. W. and W. Central station, would, afte providing $£ 10,000$ for collecting refuse, pay 4 per cent. interest,
and 5 per cent. depreciation on a capital outlay of $£ 100,000$ for electrical traction, and 5 per cent. interest on destructor outlay o $£ 25,000$ to abolish the tips, and stili leave a sum of $£ 5500$ toward the joint working expense.
By transposing Sir F. Mappin's proposal-re gas motors-into electric street light in substitution for gas, we get a splendid "load
factor" in combined traction, light, power, and refuse with th factor in combined traction, light, power, and refuse, with the Collowing results :-Last year the cost of gas and wages for street 4 per cent 4 per cent. interest, and 5 per cent. depreciation on electric outla
of $£ 100,000$, and leave $£ 10,000$ per annnm towards ing expenses for traction, light, and refuse, on terms whereby the city in twenty-five years would own its own traction, street lighting and refuse disposal works, without increasing the present actual cos of street light and refuse alone, whilst in the interval it would possess a source of increasing revenue in traction, ligbt, and power whereas by adopting Sir F. Mappin's proposal to employ gas
traction, the city at the end of twenty-five years would have nothing beyond the problematical difference between the mileage cost of gas and electric traction produced under ordinary conditions.

827, Grimesthorpe-road,
Sheffield, September 28 th.
permanent way.
Sir,-On the occasion of an accident in Scotland, arising from the expansion of railway metals, a few months ago, I wrote you a that had angied no little of my attention in byegone years ; an I mentioned that a "range of 160 deg . Fah, was very possible, it not even probable, to occur in England any year ;" and I mado in the lengtr of a 30 ft . rail would be as near as possible sin. your printing a letter in last week's issue from a "P. W. Inspector" in India, only referring to it, as I take it, to be an illustration of what I meant to convey in my first letter to you on this subject by the "navvy" or "rule-of-thumb" element displayed even at this day, at least in the matter of expansion.
Mr. Derry says that he has on two occasions tested the expan
sion of four rails of 30 ft . each, fished together as one rod and in one case, on their being subject to a range of 50 deg. of tempera ture, he obtained sin., and in another case, with a range of 75 deg., be obtained , in. expansion for each rail. I do not see however, any connection between these results and his remark
that "in neither case did the expansion touch \$in." How be could think that this amount was possible with a range of only 75 deg., while he must have gathered, from what I said, that a rance of 160 deg. was necessary, 1 don't know.
Mr. Derry seems to have und
Mr. Derry seems to have understood me to say that 80 deg. 80 deg , as the mean temperature of Eogland, when 1 only took very. as the miean of the extreme possible range in England-a very different thing; but this has given him the opportunity of
saying that, considering the mean temperature of India to be "no more than 80 deg ., and the mean temperature of England to be 60 deg., therefore the expansion in this country-1ndia-should be more than that given in England." May I tell Mr. Derry that mean temperature in this case means notbing, but tbat extremes on the mean temperature, means everything in the case we are illustrating, and, therefore, upsets his idea that less expansion is r squired in England than in India.
I have to thank Mr. Derry for his practical corroboration of my

SIR, - Referring to Mr. Watkins' remarks in your issue of the
18th inst., if I have misquoted or misunderstood him I regret it.
His letter of 31 st Anst His letter of 31st Augusti is not now before me, but I understood him
to say that makers of fish-plates do not-in them - provide for the
safe expansion and contraction of the rails, and what I wished to point out was, that any provision for expansion must be made in
the rail, not in the fish-phate. Mr. Watkins, however, informs the
world through your columns that it consists with his knowledge world through your columns that it consists with his ninowledge
that I would allow inin. for expansion in laying rails on any
and all
and ays of the year, from the coldest to the hottest. This is and all days of the year, from the coldest to the hottest. This is
a rather hazardous statement by a man who knows absolutely
nothing of my mind or my practice. In speeifically refering to
to nothing of my mind or my practice. In specificalily referring to
temperature, I supposed it would be seen that the subject was not
forgotten or neglected, and to save your space I did not purs it further. The fact is that on this line attention is at all pursue
itimes
given to the temperature of the dey given to the temperature of the day. In laying rails in the open,
the in. gauge is sused at mean temperatures. On sunny summer
dey days, when the rails are often hot to the touch, they are laid with
their ends butting close on each other: and in times of frost care in staken to allowg something more than din, sometimes nearly 1 In.
In a tunnel about $1 \ddagger$ mile long, wherein there is no great variation of temperature, the expansion pieces used at ordinary temperatures
do not exceed tin. Under the surang do not exceed $\frac{1}{\text { tin. }}$. Under the arrangements above described,
my experience warrants me in saying that in this climate the way is quite safe from buckling.
From my having said that the fish-bolts are made to fit easily in
the plates, Mr. Watkins seems to think that by this means provision to some extent is intended to be made for expansion. My remark was really made to show that, althongh no play is intended
to be given in the fish-plate, the boits are made to go easily into place so as to avoid interruption in laying the way.
ths ho the rail, the difference in diameter between the bolt and
thinks, buti, tis., tion by no means accidental, as Mr. Watkins
thin thinks, but is a dimension arrived at atter careffol experiment ;and I can only repeat that it is the play thus given to the rail that
provides for expansion, and not anything in the make of the fishprovides for expansion, and not anything in the make of the fors, Engineer.
plate.
Rhymey Railway
Rhymney Railway. Cardiff, September 30th.
locomotive performances on the caledonian railway SIR,-I have carefully read the letters of Mr. Rous-Marten
appearing in your numbers for August 21st and September 11th, giving particulars of runs made by him recently in certain of the
fast trains over the Caledonian line, and with reference to which he accords what I venture to think is a superfluous share of praise to the new Dunalastair class of coupled bogie locomotives running
on the Caledonian. Allowing that each of the runs quoted is an excellent example of locomotive work performed over a heavy Miece of road, they are in no wise superior to the performances of correspondent, I quite fail to see the extraordinary merits of these new engines. To most people the performances of the Dunalastair engines have been distinctly disappointing thus far after all that was
heard of them when they were newly built. From careful observation and inquiries made upon the subject, I have yet to learn that
they can take the least heavier load or run one bit faster than any of their predecessors. One thing is certain-that they will need to prove extraordinarily good engines if they are going to
excel the performances of the old bogies, of which I can refer
Mr. Rous-Marten to several fully Mr . Rous-Marten to several fully as good, and, indeed, some better
than those mentioned in his recent communications to THE than those
of the Dunalastair class a run from Perth to Forfar, 321 miles in 32 min . That the work is excellent I am not going to deny, but
the only extraordinary part of it, so far as I can see, is that it is the fastest timing of any train ever given in Bradshaw. It will be
noted that in this case the total train load only amounted to noted that in this case the total train load only amounted to
101 tons, or about 20 tons more than the light racing special to cylinders and more than if a 1400 ft . of heating surface, could not
not
accomplish a mile a be extraordinary. Apropos of this run, the Perth express due into Carlisle at 12.30 p.m. was timed last summer to run the
14 miles start to stop between Beattock and Lockerbie, in the even bogie, with loads up to sixteen vehicles, and rarely failed to accomplish the task set within time. I leave it to your readers to
judge as to which of the two performances is the most judge as to which of the two performances is the most meritorious. Another "super"" run by one of the 721 class, Mr. Rousground a good many years ago, and long before the Dunalastair was thought of, where one of the 6ft. 3in, rebuilt goods engines, more than the Dunalastair had on-in 64 min., steadily maintainbank. This for an engine of the class was really superb, and shows that the Dunalastairs are not so very far ahead of the times as we I have only one other instance to quote, namely, anent the
are expect
running between Forfar and Perth, which Mr. Rous-Marten running between Forfar and Perth, which Mr. Rous-Marten tells
us was accomplished once by one of the 721 class in 32 min. Three summers ago I covered the distance myself with 123 in half an
hour ; and the officials running the 5.40 express from Aberdeen over that time, and was frequently covered in 29 min., and even
over
28 min ., so that that $28 \mathrm{~min} .$, so that there can be nothing whatever new or wonderful
in one of the Dunalastairs doing it in 32 min. the whole distance being practically a falling gradient. The marvellous performances of
this well-known locomotive are too well known to need comment; and if any of the 721 class could run day after day as she did from
Carlisle to Edinburgh in 107 min. during the greater part of a
month, I should be ready to believe they were as good. I could quote plenty more performances of the Caledonian engines, both
new and old, fully up to anything that the Dunalastair has done or
is ever likely to do, but Edinburgh, September 23 rd.
ever lively to do, butficient already I think.
J, G. W, ButLer.

Leading bogies.
Sir,-Under the above heading I notice in The EngineER of the
18th inst. a letter from Mr. W. B. Thompson, in which he remarks
that the Gladstone and 230 classes on the Brighton and Great
Northern Railways respectively have been reserved by the edvocates
of bogies for their choicest invectives. Now, as I have myself
mentioned these engines in connection with the same subjecct, it is
melt only right to say that, sof far as I am concerned, this statement of engines strictly in a a comparative sentionse, Referencence was mady on the assumption
ent
that if bogies were necessary that if bogies were necessary for such short locomotives as the
North-Western "Precedents," there were " might much more reasonabby have the flexible wheel. base." As
I have already pointed out, all three classes have been running with sicess years. No one wishes to overlook the fact, or that there are many other "fine" rigid and radial axled engines
to be taken into consideration. That is not the point, however. It is surely better to err on the right side of the matter and choose
the least of two evils by still further reducien occidents. It is not often we get an impartial view of the question
of bien of bogies v. single-leading axles. Lieat.-Col. Yorke, R.E., has
expressed an opinion, which is, therefore, worth repating.
Referring to an accident on the West Island Roilway on Nay 6 . Referring to an accident on the West Island Railway on May bith
last, he sass : "TThe fact that the engine did not leave the rails,
alth athough the rest of the train did, may probably be attributed to
the flexibility imparted to the engine was axbe to adjust itsed to the the enginege by the leading bogrie, whituroo the line, pro
waco
duced by the expansion of the rails ; whereas the tender, with its duced by the expansion of the rails; whereas the tender, with its
six-wheels and rigid-wheel base, was probably the first vehicle to leave the metals, and dragged the train arter it.
sense advantages of begies as here defined cannot be easily y. explained away. Bogies have other duties besides mere weight carrying. If it were not so, ordinary axies would answer quite as
well, whether the engines weigh under or over the limit your
correspondent tpeaks of.
F. W. BREWER. correspondent speaks of.
London, N., September 22nd.

OCOMOTIVE BOILERS.

SIR,-It is beyond question that the boiler of a locomotive ought to be able to supply all the steam that the engines can use. I have
read with a good deal of interest and some amusement all that has It is clear that these letters are not written by railway men. They
It are obviously penned by men whose knowledge of the practical
working of locomotives is limited to what can be learned by the ordinary railway traveller who keeps his eyes open. The letters traveller can learn a good deal without standing on a footplate. gentlemen to something which they have quite averlooked. They one and all coolly assume that the average English locomotive
cannot when running maintain its pressure within a few pounds of the safety valve load. I have no hesitation in saying this is not from first to last on a fallacy. They imply that while the engines are all that can be desired, the boilers are too small to supply the proper quantity of steam to the engines. I venture to challenge
any one of the half-dozen gentlemen who have been writing in class of engine on any line which will not make steam name the maintain the full boiler pressure. If they can do this then we
My experience has been gathered on the footplates of engines
on the London and North-Western, North-Eastern, Midland, Great Western, the Brighton line, and the Great Eastern and the
Great Southern and Western of Ireland. It extends over more than thirty years, and I can safely say that in all that time I have incompetent, and the coal exceptionally bad.
Mind, I do not say that locomotives are
Mind, I do not say that locomotives are always powerful enough
for their work. The direct proof that they for their work. The direct proof that they are not is shown by the
increase in the size of engines daily in progress. But this has English engines are badly proportioned,
There is another point which your correspondents quite overlook. Is it true that the big boilers used in France, America, or Belgium, make more steam than English boilers? Inever was in America, so have no practical experience of locomotives there; but I know
Belgian engines well, and I am sure that they do much steam per hour as an English engine of much smaller size They have enormous grates, on which they burn a poor, dead
slack. The shovel is never out of the fireman's hand. If the coal evaporates 5 lb . of water per pound of coal it is the maximum, and
that result is only got by using tubes 14 ft . or 15 ft , long the coal poor, as it is expensive. An English engine has tubes 10ft. 6in. or
11 ft . long since that the extra tube length adds but a small fraction to the steaming power of the boiler. But foreign locomotive superin-
tendents are always straining after what is really only a theoretical tendents are always straining after what
gain ; hence the big boilers. In the United States, again, we find that, in spite of the great
size of the boilers, the quantity of coal burned is far in excess of what we use per foot of grate. They burn 100 lb . to 150 lb . per
square foot, against our 60 lb . or 80 lb . Why is this? Is it not because the coal is inferior
I will not trespass on your space further, but if any of your
correspondents will tackle the questions I have put, I shall be glad to say a little more on the subjec
Manchester, September 22nd.

Str,-I have read with great interest your article on page 266,
also the letters of Mr. Norman D. Macdonald and Mr. F. W. Brewer -pages 211 and 263-on the subject of "Locomotive Boilers." It seems to me we all mean the same thing, though we may express it
in various ways and look at the case from different view-points. Assuredly we all concur in holding that engines must have ample boiler power for the duty required of them, with some margin for emergencies. Mr. Macdonald urges that they must have large is only one of several factors that make for power. I agree with you. Also, conditions must be taken into account. No one would versa. But it is noteworthy that the Brighton express engines-alastairs-viz., 1492 square feet as against 1403 square feet-but the South-Eastern 7 ft . coupled engines, with virtually identical duty and tractive force-111 lb. per pound of effective steam pressure-
have, I believe, only about 1020 square feet, yet seem to perform
The plain fact is that the whole question of relation between heating surface and boiler power, and between boiler power and cylinder dimension, is still entirely in the experimental stage. It
is no imputation on the competence of our locomotive engineers to say this; indeed, they display the truest capacity and soundes
 alastairs, the Brighton Gladstones, and the North - Western
Teutonics, or

trial, and judgmen
September 12th.
NOTES ON WEIGHBRIDGES
Sir, -We are glad to see by your "Notes on Weighbridges," in
your issue of September 11th, that a more general
interest is being taken in the highly important principles guiding the proper construction and use of weighing apparatus, and con-
sider that the ventilation of this important subject by means of
well considered and practical articles in your influential paper is a step in the right direction. Kirby's remarks respecting the disadvantages of relieving gear are well set forth, and from our experience as the largest
makers of weighing apparatus in this country, we can heartily
endorse his conclusions, endorse his conclusions.
Relieving gear is of very quastionable benefit, as unless such machines are under careful and periodical supervision, and
frequently adjusted, a fresh balancing of the steelyard is rendered necessary after sach relieving.
A point of greatest importance in constructing weighbridges-
by some makers overlooked in these cutting times-is the provi-
sion of a liberal maskin sion of a liberal margin of strength beyond that merely necessary
for weighing up to the fall capacity of his machine. Where such fromal margin is provided, there need be no fear of accident from the passage over the platform of a load above such capacity,
even when a rieieving machine happens to obe in gear. To otan
proper durability, the centres and bearings which have to stand proper durability, the centres and bearings which have to stand
such heavy wear or impact must be made of suitable width or bearing surface, a mattere so often neglected, to the great after
expense of the unpractical purchaser. danger to health to which public attention has not before been directed, viz, the proper drainage and ventilation of weighbridge
pits, which are ofton little better than cespools, and only toler ated from habit or neglect.
Digbeth, Birmingham, September 24th.

horseless carriages

SIR, - I had hoped some more experienced individual than
ayself would have commented on your article of the 18th You speak of the difficulty of getting rid of waste products, and you picture Cheapside packed with heavy on vehicles, and infer
that the smell woold be a great nuisance. If however, these
carriages were moved by steam and fired with coke, I think there carriages were moved by stean and fred with core, h think there sulphurous, suffocating fumes of the latter. You, however, suggest
oil as fuel to generate steam, but the cost of burning oil under oil as fael to generate steam, but the cost of burning oil under a
boiler is far greatar than burning it in the cylinder of an engine.
An oil eighths of a pound of oil per brake horse-power hour. In
the manal engines of a motor carriage we can hardly expect such economy as in the larger engine, and 1 lb . of oil-taking the on
at 6 d . per gallon-would produce 1 brake horse power hour costing three farthings. On the other hand, the oil-fired boile
will the $2 \frac{1}{2}$ lb., costing $1 \frac{1}{8} \mathrm{~d}$. to obtain the same power. The oil-fired boile will thus cost to work more than double the expense of the interna combustion engine. This is assuming that ordinary lamp ooll is
used ; any of the cheaper oils, such as crude oil, may be dismissed, as they are practically unattainable in England.
ing the fire on a long diplat the oil ine shat onf and the boiler ceases to generate steam. If
the coke is used, as I believe it frequently must be, some self-feeding
or some self-acting method of stoking will be wanted, either the You speak of thine. ifficiculty of starting with steam; there is no
necessity for coupling the engine rigidily to the wheels ; if engine is necessity for coupling the engine rigidy to the wheels, if engine is
started first, and by a culch the road wheels are brought into
gear, there is less difficulty in starting than with a petroleum engine, or the engine might drive its gearing by the intervention
of a spiral or twisted spring. For instance, the back-lash in th ear of a traction engine will enable the crank shaft to make and it will thus get away with a lood that it could not move if the Those were not free to start before the load.
Those who have ridden on both steam and petroleum carriages
must have noticed how much more quickly the latter gets than the former. A steam carriagestarting reminds one of a poods train getting under weigh. If engine could only make half.a-doozen
revolutions before the carriage moved, I believe it would obviate revolutions before the carriage moved, I believe it would obviate
all difficulty in starting.
JRNRY KNICHT. all difficulty in starting.
Barfield, Farnham,

Sir, - I have read the letter in yours of the 25 th from Mr .
Thomas Hill, and am very much surprised to find that he is no Thomas Hill, and am very much syrprised to find that he is not ware of the very important improvements that have been made
in traction engine wheels. He refers to broad wheels with flat bars rivetted on at an angle to grip the road. Any practical man not have on a rigid Macadam or paved road one square inch of flat surface on the ground at once for adhesion. He says no improve-
ment can be made towards contact with the road in the way of ment can be made towards contact with the road in the way of
hauling power. Mr. T. Hill does not seem to be aware that we have in tawer. Mashire traction engine wheels working for seven years the grain, flat on the road constantly. He seems to be built up with a broad wheel for wear and tear. I have forty years ago and less
run 100 miles a day on common roads with a steam carriage weighrun 100 miles a day on common roads with a steam carriage weighasing only one wheel for driving, with a tire 3in. wide, wheel 5 ft . ascending gradients frequently 1 in 15 . I quite agree with your correspondent that lots of people who take an interest in moto cars should make themselves acquainted with what has been don
Ashton-under-lyne, September 26 th.

SIR,-I think Mr. Hill mistakes what is the object of the motor traction engines now drawing heavy trains behind them which are quite unfit for country roads. Farmers cannot employ a great
traction engine, but they could employ a farm wagon which had traction engine, but they could employ a farm wagon which had
a steam or oildriven motor below the wagon between the wheels, where there is plenty of room for it. Sach a wagon would serve a farmor and are bring back manure engines. I think the Act allows too great a weight for the engine
-three tons in one carriage and one ton for one carriage behind having more than six wheels in all, and not to weigh more "when having more than six wheels in all, and not to weigh more "when
loaded than five tons, it would have been much better. They up the roads.
Penithon, Radnorshire.
G. A. Нал.

Electric motor car for the euern of spain

 Sir,- - I do not wish to take any of the credit which is due toMessrs. Thrupp and Maberley for the excellent way in which the vehicle, per se, was designed and made, but at the same time it is
only fair to state that the motor-Immisch type-together with
thedriving and controlling switch the driving and controlling switch apparatus, was ordered from and claims of the inventor of the primary battery for this carriage are to say the least, remarkable, and certainly the space taken up by
them is far less than any of the other electric carriages I have had o do with. It is to be hoped the Queen of Spain will duly appre-
ciate the production of the English coachbuilder and engine Newcastle-on-Tyne.
(For continuation of Letters see page 350.)

RAILWAY MATTERS，

Last Friday was the seventy－first anniversary of the
THE total length of Russian railways，exclusive of those of the Grand Duchy of Finland，on Docember 31st，1895，was
21,961 English miles．Of these the Government lines extended
over 13,602 miles，and those still belonging to private

The Liverpool，St．Helens，and South Lancashire Rail－ way Company were on Saturday last fined $£ 5$ per day from
May 31st this year to September 25th for not completing two railway bridges according to Act of Parliament．The total penalty
up to Saturday was $£ 1190$ ．The proceedings were taken by the
Golborne District

Traffic on the Lancashire and Yorkshire Railway near Rochdale，was delayed last week by a displacement of rails
through the collision of a goods train from Normanton with a train of empty carriages that was being passed on to the main line at
Wardleworth Junction．The Normanton engine struck the guard＇ van of the empty train，but the guard was in another vehicle，and
no one was hurt．The engine was not damaged，but the van was knocked to pieces and some carria
No uniform system whereby，while a train is in motion， passengers may communicate with the guard and the driver has
yet been adopted on the Indian railways．The Bombay，Baroda，
and Central India Railway Company have，for some years，bee nd Central India Railway Company have，for some years，been
sing Winter＇s electrical system，and on the Great Indian Penin－ sula and the Madras railways different other devices have been
tried．According to Indian Engineering，the Government of India
are now moving in the matter with a view to see if some uniform
The horseless carriage movement is causing considerable interest in the Midlands．In the course of correspondence which has there is enough energy being put into the matter in Coventry alone men in Birmingham who intend to have their auto－cars in the
streets next season；further，that it is probable that in a few week streets next season；further，that it is probable that in a few weeks
from now motor cycles will be offered in Coventry at from $£ 60$ to
$£ 70$ each．

Major F．A．Marindin＇s report to the Board of Trade upon a slight collision which occurred at Waterloo Station on the
London and South－Western Railway on the 29th August has come to hand．The collision was a very slight one，and was caused by with the engine of a down passenger train which had just started
from the main line platform．The engine of the passenger train from the main line platform．The engine of the passenger train
was derailed，and the train，coming to a sudden stand，was run into from behind by a light engine，which had brought the empty
train to the station，and was following it out in the usual mann train to the station，and was following it out in the usual manner recommends the company to put in a shunting neck，which woul
allow engines to be shunted up and down on these sidings without
danger of fouling No． 3 line，protecting the cross－over road leading danger of fouling No． 3 line，protecting the cross－over road leading
into the south station by means of safety switches on the engine into the sout
shed sidings．

Some attention is being aroused by correspondence which has appeared in the Midland papers promoted by the Railway
Nationalisation League，of 47 ，Queen Victoria－street，London， railways，and declaring the State railways ought to be the firs
plank in the legislation of next parliamentary elections．Mr．W Wilson，dating from the offices of this body，writes，under dat
September 28 th，declaring that fares and rates are kept high to
pay for about 250 boards，staffs，departments，\＆c．，when on pay for abouning board would be more efficient．Two hundred
central governd
and fifty million goods rates have been confusedly regulated by and fifty million goods rates have been confusedly regulated by
977 Acts，while about 3000 more Acts deal incidentally．The
Railway Commissioners by adopting general terms reduced 3000 items by 900 ，and further simplification is，he contends，quite
possible．The Great Western Railway Company＇s share of the possible．The Great Western Railway Company＇s share of the
$250,000,000$ rates is $25,000,000$ ，requiring a large rate department
and a library of 2000 large volumes ；but the German rate－book for all their State railways is a pocket octavo of 76 pages．
A correspondent of the Times writes ：－＂A year
before the passing of the Light Railways Bill in the English
Parliament the Prussian Legislature had sanctioned a similar before the passing of the Light Railways Bill in the Englis
Parliament the Prassian Legislature had sanctioned a simila
scheme for the development of minor railways in that kingdom
The operations have now been going on for about eighteen months The operations have now been going on for about eighteen months
and the prospects are most promising．As in England，the chie
object of these minor railways is to assist native agriculture in it
present depressed condition．The first grant was made at th

 maw waw wix

 yuaizuaymuaizizi marks．Hence it would appear that the minor railway system i
Prussia is being carried out with the greatest rapidity and success． A largely attended meeting of representatives of
Western Australian gold mining and other companies was held i Western Australian gold mining and other companies was held
London on Monday last，to protest against the proposal of the
Western Australian Government to start the Menzies Railway marexatuad atis

 axawazazaz veramatay

 maxazawaway wat wix

 anduavain

NOTES AND MEMORANDA．

As illustrating the enormous stride which steel has made in steamship construction，the gross tonnage of vessels under
construction on September 30 th last，excluding warships，was 633,232 of which less than 5000 tons were of iron，timber，and composite． It appears from the returns compiled by Lloyd＇s
Register of Shipping that，excluding warships，no fewer than 355 Register of Shipping that，excluding warships，no fewer than 355
vessels，of 659,641 tons gross，were under construction on 30 th vessels，of 659，04．This，ho
September last．Thent
There was on the same day recently nine British war ves sels under construction in Royal Dockyards，of 80,835 tons total dis placement；and sixty British vessels，of 104,455 tons displacemen ality is not stated，twenty－six were in course of building，having The net output of the Nord and Pas－de－Calais coalfield against $7,766,393$ tons during the first half of last year，showing an
increase of 534,732 tons．Of the above quantities the Pas－de－
Calais contributed $5,749,360$ tons during the first half of the present year，against $5,314,647$ tons during the first half of last year，showing an increase of 434,713 tons．The companies whose
output shows the greatest advance are those of Flechinelle with output shows the greatest advance are those of Flechinelle with
57 per cent．，Bully．Grenay with nearly 25 per cent．，Bruay 19 per
cent．，Marles 11 per cent．，Neeux 11 per cent．，Lens $8 \cdot 3$ per cent cent，Marles 11 per cent．，Neeux 11 per cent．，Lens $8 \cdot 3$ per cent．，
Ferfay nearly 7 per cent．，and Dourges 6 per cent．，in the Pas－de－
Calais；and Douchy with $10 \frac{1}{2}$ per cent．，Escarpelle with 8.2 per
cent．，and Aniche with 5 per cent．，in the Nord． cent．，
winding
a mean mean output of 97,000 tons in the Pas－de－Calais，and of ， $2,214,000$ tons，was contributed by a shaft of the Bruay Colliery． In round numbers the half year＇s output of the northern coalfield
has exceeded by 500.000 tons that during the corresponding period has exceeded by 500,000 tons that during the corresponding period
in 1894 and 1895 ．This result is attributed to the revival of trade． In the course of his speech inaugurating the second International Congress of Applied Chemistry，Professor Berthelot
observed that during the last twenty－five years chemistry has
transformed the mining art by the methodical discovery of new explosives，by the rigorous，theoretical，and practical measure of explosives，by the rigorous，theoretical，and practical measure of
their relative foree，and by fixing the rules which should preside
over their use．In the metallurgy of iron，steel，and gun metal ver their use．In the metallurgy of iron，steel，and gun metal
also，methods and processes have been changed under the impulse of chemistry．To the metals known during the last 700 years are nickel，aluminiam，and tungsten，the future and possible destina－
tions of which it would be presumptuous to limit． by which the new and ancient metals are prepared are now
undergoing unexpected changes under the influence of the
united theory and practice of chemists and phen united theory and practice of chemists and physicists．Elec－
tricity，which has given rise to more general and more radical slectrolysis and electric heating－deduced alike from physical and chemical laws．Electrolysis works both by the wet and the dry way，
the former having created electro－metallurgy，while the latter triumphs especially in the preparation of the metals．Finally，the
electric furnace utilises in the production of metals and other alloys the combined effort of electric polarisations and the high
temperatures，until lately unknown，which electricity now affords． A paper recently read in America on heat conductivity，
xpansion，and fusibility of fire－brick，by Mr．J．D．Pennock，gives avaway wivivi

 $3=4$
 Maw waway waw du
 ＝mixa
 $1=4=2+5$
 wastamatazat wivewaid vicwaid

 $=2$ zamainiziza

 waw witazy
 12

 5

MISCELLANEA
We have received a prospectus of the day and evening P at the King＇s College，London，for the session 1896－97．
Palmer＇s Shipbuilding and Iron Co．have，at Jarrow， commenced the manufacture of vicycles，and it is their intention preparing to go in largely for the motor car manufacture．
The exhibition at the offices of the London Chamber of Commerco，Eastcheap，of samples of foreign goods which compete
with British production in the colony of Victoria will，so far as the day exhibition－ $11 \mathrm{a} . \mathrm{m}$ ．to 4 p．m．－1s concerned，close to－morrow－ by workmen between the hours of 7 p．．．
evening from October 5th to October 9 th．
The first meeting of the committee formed for the purpose of promoting the International Submarine Tolegraph
Memorial will be held in Room 174，Winchester House，Old Broad street，London，E．C．，on Tuosday next，Octnber 6th，at 230 p．m．
An executive committee will then be appointed，and it is expected An executive committee will then be appointed，and it is expected
that Lord Kelvin will explain his views as to the most appropriate In these days of keen competition between home manu facturers are available－the United Kingdom supplied 23.7 per cent．of the total imports into
steady since 1888 ．In that year it was 25.9 ；in 1889， 23 ；in 1891 ， 21.9 ；in 1892， 25 ；in $1893,25 \cdot 5$ ，so that，says Mr．Michell，our
Consul－General at St．Petersburg，in spite of fluctuations in amounts，German competition，and Russian protective legislation，
British imports maintain their position，and in 1894 were higher in都 than for mears previous
A remarkable instance of the enormous force of the wind during the recent gale occurred at Dover．A Goliath crane，
weighing over one hundred tons，which is used on Sir John Jack new harbour works，was blown bodily gall int thes on it crane was caught by a squall，which snapped the chains that
held it，and drove it along the rails until it reached the end of the pier．In its fall the crane smashed the wooden pile work，and a it crashed on to the stone breakwater the boiler exploded with a
loud report，which was heard for a considerable distance．Most is estimated at a considerable sum．

The official traffic returns for the North Sea and Baltic of which 642 belonged to regular lines，have passed through th canal． 266 German and two foreign war vessels also made use of
the waterway．The sailing ships numbered 9303 ，of which 8477 were German．Among the ships belonging to other nationalities
were 3 Belgian， 164 English， 547 Danish， 6 French， 63 Dutch， vessels included 20 English， 265 Danish， 2 French while the sailing torwegian， 162 Swedish，and 28 Russian．The total receipts from
steamships amounted to 680,825 marks，and from sailing vessels to 216，626 marks，making a total revenue of 897,451 marks－a sum estimate of $5,000,000$ marks．
The whole of the electric light installation at the new
Trocadero Restaurant has been carried out by Messrs．Strode and Trocadero Restaurant has been carried out by Messrs．Strode and
Co．，48，Osnaburgh－street，Regent＇s Park．A new system of
wiring，called the＂new conduit＂system，has been used in this building，the whole of the cables and wires being drawn into speci－ ally prepared wrought iron tubes，insulated inside，and screwed
together，and arranged with inspection boxes in convenient posi tions，so that the whole of the cables and wires can be drawn into time for inspection．The advantage of this system is that the whole of the tubing of the building can be done during the pro－ gress of building，thus avoiding any unnecessary cutting away nearly completed，thus avoiding all chance of mechanical injury ，man
The result of the ballot which was taken on Tuesday night upon the question of whether or not the men engaged in the
iron trades in the Manchester district should withdraw from their
work on Saturday next unless the masters granted the adyance of xuawuraws waw －man上2man上，＂avanumatam

 mys．
The Vice－Consul of Tunis suggests that British is open to all on equal terms，and it is a pity that an important are fow．He mentions especially the trade in metal goods as one
likely to repay attention．British machinery has a good name in Tunis，and is rarely found there，although there is a great deman for machinery with the increasing industries，such as oil mills and
presses，which are being erected in great numbers，and require
extensive plant of a kind manufactured in England．Again，the Vice－Consul frequently hears the wish expressed for a good English
knife，but one is not to be had，and so it is with a long list of articles，of which there are worthless imitations in abundance ones．Formerly it militated against British trade that there was no direet shipping，but now vessels go every ten days from Man Tunis，and thus goods which cost much for carriage，and took
twenty to twenty－five days，now go cheaply and in just half the
time，a consideration which is much appreciated locally．
The report of the Canal Commission which has been considering the proposal to unite Now York and Philadelphia by
a ship canal has just been issued in pamphlet form．Two surveys it appears，were made by the direction of the Commission，but by
either route vessels would use the Delaware River from Philadel Jersey，entering the sea at Sandy Hook．The distance between the two cities would thus be reduced from 274 miles to 92 miles，of the canal，if 150 ft ．wide and 20 ft ．deep，would cost $£ 2,852,920$ ，o additional sum of $£ 187,172$ would be required to deepen the river approaches to the canal，or $£ 625,140$ to obtain a 28 ft ．channel
The surface of the canal would be 58 ft ，above sea level， would be three locks at each end．The soil to be excavated con－ sists of sand，gravel，and clay．Steaming at 10 miles an hour，a
vessel going by Cape May and the ocean takes 271 hours；by the and delays in passing the locks，the time occupied is put at
15 hours．

the table of trajan in the stratts of kazan

FOREIGN AGENTS FOR SALE OF THE ENGINEER. AUSTRIA.-Gerold AND Co., Viemna.
 R. A. Tzoumson AxD Coor, 180, Pitt Sy tre A. Trourson asd Co., 180, Pitt-street, Sy dny; 868 .
Little Collinsastret, Melbourne; 7 , Eing William-street, TORNER AND HENDERSON, Hunt-Atreat
 UNITED STATES OF AMERICA.-INTERNATIONAL NEws Co., 88 and 85 , Duan-street, Nete Yor
 Ceylon -Wilayartan and Co., Colombo.

SUBSCRIPTIONS.

The Exaorskre can bo had, by ordor, from any newagent in town or
country, at the various railway stations ; or it can, if preferred country, at the various tailway stations; or it can, if prefered, be
suplied direct from the ofice on the following terms (paid in
\qquad Half-yenrly (Including double number)
Yearly (including two double numbern)

credit occur, an extra charge of two shillings and sixpence per annum A complete set of Tre Enoinkre can be had on application.
consequence of the reduction of postage on newspapers to one uniform rate for any destination outside the United Kingdom, Foreign Sub-
scriptions will, untll further notice, be recelved at the rates scriptons will until further notice, be received at the rates given
below Subseribers paying in advance at these rates, will receive Tur ExanskrR weekly and poast free. Subscriptions sent by
Post-office Order must be accompanied by letter of advice to the Publisher.

ADVERTISEMENTS.

- The charge for advertisements of four lines and under is three shillings, for every two lisesesenterwards one shilling and sixpence; odd
lines are charged one shilling. The line avernges seven words. When an advertisement measures an inch or more, the charge is 10 s. per inch. All single advertisements from the country must be accompanied by a
Post-office Order in payment. Alternate advertisements will be Post-office Order in payment., Alternate advertisements will be
inserted with all practical regularity, but regularity cannot be guaraninserted with all prastical regularity, but regularity cannot be guaran-
teed in any such cass. All except weekly advertisements are taken teed in any such case.
subject to this condition.
Pricos for Displayed Advertisements in "ordinary" and "special positions wil be sent on application.
Advertisements cannot be inserted unless delivered before
Six o'clock on Thursday evering; Six o'clock on Thursday evening; and in consequence of
the necessity for going to press early with a portion of the the necessity for going to press early with a portion of the
edition, ALTERATIONS to standing advertisements should arrive not later than Three o'clock on Wednesday afternoon in each week.
Cetters relating to Advertisements and the Publishing Department of the
paper are to be addressed to the Publisher, Mr. Sydney White. paper are to be addresed to the Publisher, Mr. Sydn
letters to be addresed to the Bditor of Ter Evarimke.
Telegraphic Address, "enaineer newspaper, London."

PUBLISHER'S NOTICE.

* With this week's number is iswued as a Supplement a Two-page
Engravingof te Triple Expansion Engines of H.M.S.S. Pornerfil.
Every copy as issued by the Publisher includes a copy of this Supple. Engraving of the Triple. Expansion Engines of H.M.S. Ponerfiul.
Rerery yoond as issued by the publishe includes a copy of this Supple
ment, and subcries are repuested to notify the fact should
they not receive it. Price Gd.

CONTENTS.

TO CORRESPONDENTS.

 A. B. .Cer. $-\mathbf{A}$ coiled spring could bo used for the purpose of lowering
weights as you propose. But the equivalent of the fusee and chain of

 Personally hid not like india-rubber for genge ged. subjected to high-pressure steam. When heated, india. ubber became plastic, and if by any means a film of ubber got under the edge of the gauge glass, it would be orced progressively within the circumference of the glass, than with the old.
It appears to us to be a little remarkable that a ship should be permitted to go on steam trials with all her gauges in a defective condition. The fact, if it be a fact, is very suggestive. It seems to us to be quite pozsible that the engineers in charge noticed noning unusual been packed a dozen times before. It is tolerably certain that every one, down to the youngest stoker in the fire rooms, knew that a lying gauge glass might mean a dreadful death. It is difficult, therefore, to account for any neglect on the part of those in charge. The prominent act, so far, a type of gauge which it is to be supposed has done
good service for many years. We know that a standard gauge has always been in use, and that contractors have always had to use it. We have, indeed, seen a gauge suitable for a boiler 12 ft . in diameter, with
end plates lin. thick, fitted to little launch boilers so end plates lin. thick, fitted to little launch boilers so small that a couple of men could lift them. We have thus the curious dilemma placed before us. On the one hand, the Blake was fitted with gauges of a kind held for years to be the best possible-for only the best is supposed to get into the Navy; and, on the other, it appears from the evidence that nearly all the gauges were partialhy blocked up; and we have no evidence to prove that
this state of affairs was quite unprecedented and abnormal, this state of aftairs was quite unprecedented and abnormal,
and every reason to believe that the usual amount of care had been taken in packing the glasses. How are we to reconcile the assumption that gauges of defective construction would not be passed into service when the fact that not one but a number of gauges on board the Blake could show false water? It would be a slur on the intelligence of our readers to explain in detail the tube auge fittings are properly made the choking of the tube by the packing is physically impossible.

the condition of the streets

Those whose fate it is to traverse the distance between Charing Cross and St. Paul's day by day have excellent reason to doubt the advantages of town life, and to ask is it not possible that something may be done to preserve - njosmeneaning pedestrians that right of way for the enjoyment of which, in theory, they pay so heavily in practice. In no other city under the sun, we believe, exist an intolerable condition of affairs be permiled to exist continuously. The ripping up of the pootways is in passinge sporadic; it is not a ably desirable end at the cost of a momentary evil. On the contrary, the ripping up and the blocking of the footways seems to be the normal condition. Fleet-street and the East Strand are just now suffering most heavily, but matters are little better in other parts of London,
Under proper urban conditions, we have asphalte foot-
ways bordered by stone kerbs, and provided with "coal plates" giving access to cellars under the footway. These footways are, however, too narrow as it is for the great stream of traffic moving East and West along Fleet street. These dimensions are, moreover, continually poses. These are thrust out into the street. In some cases they occupy the whole width of the footway, and then a narrow space is taken from the roadway, and railed off for foot passengers. In others the carriage road is already too narrow, and a passage about 2 ft . 6 in . wide is left on the trottoir to provide for the movement of the multitude. Many years' experience tells us that build ing operations are always going on in Fleet-street and the Strand; and it also tells us, that no attempt what ever is made to expedite work, and that the last venience of the public. There is an is the conquestion which does not receive adequate attention. The hoardings are a direct source of gain, and that on so considerable a scale that it pays well to keep the on so considerable a scale that it pays well to keep the
hoardings at the service of the advertiser as long as hoardings at the service of the advertiser as long as
possible. In a case which came not long since under our possible. In a case which came not long since under our
notice in a leading thoroughfare north of Oxford-street notice in a leading thoroughfare north of Oxford-street
three houses of moderate dimensions were being built. three houses of moderate dimensions were being built.
Operations were interrupted by a strike, which the con-
tractor and all concerned took very coolly. On inquiry we found that the rent of the three houses would be
$£ 600$ a year, from which would be deducted rates and $£ 600$ a year, from which would be deducted rates and
taxes and the cost of repairs. But the hoardings were ringing in quite $£ 600$ per annum from advertising firms. In a word, the hoardings were a far better propert
than the houses which they surrounded would be. N doubt the advertising element plays an important part in settling the size of the hoarding and the time it are abroad, brought under strict police supervision, while ax, something would be done to mitigate a considerable nuisance. But, furthermore, a little judicious exercise of Why should not prevent continuous building operations instead of prolonging the work for years, by rebuilding of the United States this plan is adopted, and no building operations in any given street are permitted except
during pre-arranged periods. Thus, while building is proceeding in 45 th street, let us say, the streets on either proceeding in 45 th street, let us
But the rebuilding of London in a piecemeal, half hearted way, is not the worst evil. Let us consider
what lies under our footways. We have all the gas and what lies under our footways. We have all the gas and fre hydrants, and those of the hydraulic power company; of the Post-office ; a considerable proportion of telephone panies. All, or nearly all, these have cast iron manholes, and these are so numerous, and the footways so narrow, that probably 20 per cent. of the surface in
Fleet-street is made up of the iron lids of these boxes. Numerous as they are, however, they do not suffice, and not a week passes without the asphalte being broken u_{p}
by some one who wishes to get at a cable, or a pipe, or a wire below. It is very questionable if asphalte is the proper material for a footway under the circumstances, a hurry. The trench is cut with much labour in the concrete. The pipe, \&c., is laid or renewed, or the stuff which gets a perfunctory ramming, and is left to settle. In a week the surface of the filling is removed, and the space made up with cement concrete protected come along and lay the asphalte, rendering the street unendurable with suffocating fumes for hours. The whole operation means the ruin of the footway for when a parallel line is ripped up by someone else. And the footways in Fleet-street left unmolested for a fort night.
Now, we feel certain that there is bad management quite ready to admit the overcome by the authorities, but we should be well satisfied if we saw that sensible, reasonable efforts were made be less ripping up of streets if obstacles were thrown in the way by the authorities. They are not in the United States one-half as particular as we are, but even there the municipal worm is beginning to turn. The cost of tremely heavy. New York charges 16 s . per square yard for opening an asphalte pavement, with mimimum charge of $£ 34 \mathrm{~s}$., and and half that sum for every succeed granite pavement, and half that sum for every succeed
ing square yard. The City of Philadelphia charges $£ 212 \mathrm{~s}$, ing square yard. The City of Philadelphia charges £212s besides all the charges for renewal, and $£ 312 \mathrm{~s}$. between December 1st and March 1st. In this way it is hoped
that something will be gained, and that the footways will that something will be gained, and that the footways will not be ripped up without due cause. Householders, for service pipes, if they know that it will cost from 8 dols.
to 16 dols. merely to get at the pipe in case of a leak or other failure
should be made in our streets to carry water and gas mains, \&c., and the suggestion has been partially carried into practice. It is difficult to do it in old and narrow
streets, but there would be no insuperable difficulty of streets, but there would be no insuperable difficulty of
this kind, nor would the cost be very great of laying under the footway of any and every street a cast iron
trough, 4 ft . wide and 2 ft . deep, in which could be stowed trough, 4 ft . wide and 2 ft . deep, in . covered by asphalte. The trough could be covered either
with chequer plates or with stone or asphalte blocks in with chequer plates or with stone or asphalte blocks in
frames. It would be waste of time to dwell on the advantages to be obtained. The objections are scarce worth
mentioning. Induction, for example, can do more harm mentioning. Induction, for example, can cables and wires lie in a box than it can when they lie side by side in gas-sodden earth. The service pipes would a very large outlay would be paid by the saving effected in the cost of getting at the pipes and cables. The engineer-
ing difficulties are nothing, and the comfort of the foot passengers would be immensely promoted. It seems to as they are without a public expression of feeling which suggest is on the whole not only perfectly feasible but literally quite unobjectionable

Ir is just possible that were our Parisian neighbours so fully acquainted as ourselves with the numerous disagreeable features attending subterranean railway
travelling they would not be so anxious to construct their new project upon lines closely resembling those
of our own Metropolitan. Authorities and parties in
France interested differ-as will be presently indicated-
respecting the best means to achieve the end in view,
but they appear to be unanimous in the opinion that the
desired goal should be attained in one way or another desired goal should be attained in one way or another
It is the Municipal Council of Paris that has proposed a scheme for a Metropolitan Railway, which our pro fessional contemporaries regard with marked disfavour It has been wittily observed that the chief raison d'ctr of the Municipal scheme is to prevent the Parisians from if the their capital. Granted, but on the other hand, those living in the suburban districts will be equall destitute of the proper facilities for ingress. It is exceed ingly doubtful whether in the long run the results of the great focus of centralisation, that is, the metropolis itself. It may be remarked, without entering into unnecessary details, that a small portion of a metropolitan system exists already in Paris, such as the ligne d
Ceinture, and the western suburban line. The objection raised against the system proposed by the Municipa Council-which in the main we agree with-are, first that it completely cuts off the possibility of any interalready referred to, and those of the future, by the adop tion of a different gauge. This is a grave error, although support our contention. Secondly, it is pointed out that all communication between the existing railway station and those pertaining to the new line will be of a very troublesome and unsatisfactory character. Again, it is
alleged that the scheme will be hopelessly inoperative as means of supplying the capital with provisions, and that, consequently, it will be practically useless for the purposes of defence and mobilisation. These are very
serious allegations, and it will be interesting briefly to onsider the grounds upon which they are based
It is some forty years since the first scheme for metropolitan railway in Paris was brought to public ects have be that period numerous tenties for pro proval, but one by one they have all succumbed to the nsuperable difficulty of reconciling the conflicting interests of the metropolis in partioular, and of the State in general. While, therefore, the French Government has always regarded the proposed metropolitan as a rail way possessing national claims, and not to be conceded to the City of Paris as a monopoly, it is doubtful whether would now hold unconditionally to that opinion. Thus for from all the present stations and all future lines adopting the recognised width of track. It appears rather an extraordinary proceeding, but what the Muni entirely within its own jurisdiction have a railway control, and disconnected from all other existing lines To ensure this condition of unenviable autonomy and gauge. In an engineering point of view-digressing for a moment-there are no objectionable features in con nection with the proposed project, apart from those which inevitably accompany all underground tracks, The sharpest curve does not radiate less than 250 ft ., and Except gradient does not exceed one in sixty new line, whether in tunnel, cutting or of the proposed differ much in unsightliness from our own, there is little to choose between them. The usual object of the promoters of new lines of railway is to place them engineers have adhered to that self-evident principle engers the rural. The Municipal Council of Paris has violated this principle, in fear lest the population should abandon that this enforced isolation on the part of the Counci may be ene-we do pposition to the great railway companies of the capital In a different department of important public works, ou readers will recogise a somain recent similar manifesta of gaur on thetropols. The of gauge on worthy of the guardians of so great a capital as Paris The adoption of a metre gauge, even admitting th The adoption of a metre gauge, even admiting the taught us, is more apparent than real in crowded cities defeats the very objeci for which a metropolitan railway
should be designed. Its capabilities will not suffice for the deme asigned. Its capabilities will not suffice fo will not be made upon its resources, and in a word, it that what remunerative. It is satisfactory to notice there is a univ project may ultimately be carried out that the mode of traction or haulage should be electrical We might ourselves take a hint on this point from ou friends on the other side of the Channel

VORTH BRITISH RAILWAY WORKS.

The North British Railway Company is making rapid pro
ress with some of the great lines and works it has in course gress with some of the great lines and works it has in cours additional capital, and of this sum about $£ 175,159$ was spen the lines and works in course of construction; and $£ 155,211$ lines and works that are open for traffic, the largest item wa that of the Waverley Station and the widening of the line course of construction, Methil Harbour took £40,291; and o wagons, which claimed seven-eighths of the total. In th half-year that has now begun, the anticipated capital expendi-
ture is about $£ 340,380$, and more than a quarter of this is on
working expenses for the period displayed a slight tendency
to rise, they were still $47 \cdot 11$ per cent. of the traffic receiptsa percentage that is far below that of many of the great lines of England. The company has now under construction, o before constructed, some $34 \frac{1}{2}$ miles of line, so that there is stil remains to be expended after the end of this year a very large sum on capital account, including about $£ 888,000$ on the Waverley works, it will be seen that it has before it some merce of two of the great centres of trade that the railway serves is satisfactory, and though the mineral trades have to contend with very low prices, they have the advantage of the United Kingdom. It may perhaps any other district in before the Scotch railways a period be hoped that there is enable them to complete their great works in hand, and to allow the traffic that these should bring to grow so as to give o the enlarged capital a better yield than is now obtained There is at present all the indication that this is likely to be the case, unless there
that is not yet evident.

THE TERRIBLE

A comparison of this great vessel with her immediate predecessor in the British fleet most forcibly illustrates the February, 1845, what was then considered one of the finest war steamers in the world was launched at Daptford, under the name of Terrible. A wooden paddle-wheel vessel ons measurement, 1847. Messrs. Maudslay and Co. had power at the cost of $£ 41,250$. The weight of engines is given at 212 tons; of boilers, 250 ; water in boilers, 138 ; paddles, making a total of 660 tons for steam machinery. The length of engine-room, which doubtless included that of stokehol nd bunkers, was $76 \mathrm{ft} .7 \mathrm{in} . ;$ breadth, $38 \mathrm{ft} . ;$ depth, 27 ft . 4 in . four cylinders 6 ft . diameter; Siamese engine; weight of
coal carried, 800 tons. Her first armament seems to have consisted of twenty guns, the heaviest 95 cwt ., throwing a 68 lb . round shot, or a shell of less weight. Her complement of officers and men was 240. Her first trial trip was in the pring of 1846, when, with a draught of 18 ft . 11 in. aft, she trained a speed of point, vie an hour funnels, though ore time later were the tho parison of this first-class cruiser of 1846 with that of 1896 hows that the latter has more than double the length, 28 ft . more beam, and well-nigh 50 per cent. more draught. placement probably four times as great, and at least tenfold engine power, which gives about double the speed; while as the weight of any ever used by the old; and even that statement but faintly expresses the advance in other respects.
Nevertheless, the old steamer did good work in her day. She took active part in the bombardment of Odessa and
other operations in the Black Sea during the Russian war o other operations in the Black Sea during the Russian war of
1854-55, and, after various services, one of her last was to
assist, in 1869, in towing the great Government floating dock so Bermuda. She did not disappear from the Navy List till 1876. In wishing success to her new namesake, we can only with the same good fortune, there will be no just resson to complain.

machinery wins.

"Superstitions," we are told, "die hard." A lamentably ingering death has been the fate of the manufacturing fallacy that files can be better made by hand than by The last screw in the coffin of this industrial superstition ha been turned by the Government, for specifications from a mportant Government department are now in the hands of certain firms of file manufacturers in Sheffield, in which occurs the stipulation that they are to be machine-cut This is understood to be the first time that any tender manating from the Government has contained such a proin the trade. Moreover, since the men employed by the hand-cutting firms obtained a 10 per cent. advance on thei wages, these firms say they have been at a disadvantage in got no advance. Some have since adopted machinery, and thers are saying that they must now come to it, or they will be shut out from securing Government and other contracts So thoroughly does machinery seem to have taken possess to engineers for the requisite machinery are actually exceed ing the capacity of the workshops to supply. Taking advan demand the Germans are now introducing file.cuttin machines into Sheffield, and are trying to obtain orders. This is certainly a remarkable fact. Yet it is not a little gratifying that at the very same time that this is going on rom the Stfield as well as machines for whetting chisels for use in file-cutting machines

LITBRATURB

Submarine Cable Laying and Repairing. By H. D. Wilkin-
son, M.I.E.E. The Electrician Printing and Publishing We shall now turn to that part of the book which ha reference to the laying of a cable. Provided that previous surveys have been made such as enable a suitable type required length made, no further soundings are neces sary until the laying ship and he

Phillips-Fig. 188 -is, for surveying great depths, pro-
bably the most satisfactory; whilst for shallower waters the hand machine-page 339-of Mr. F. R. Lucas, has done exceedingly useful work. The author gives a
description of a machine-illustrated on pages 335 and 336 -which has since been very much improved on by the Silvertown Company. Some parts of this chapter do particularly as regards the instructions relative to the particularly as regards the instructions relative to the rendering splices, for all depths so far experienced, quite unnecessary. Again, any such system as that originally unnecessary. Again, any such system as that originally
suggested by Lord Kelvin, of balancing the weight of wire outboard by weights added to the brake as the wire is paid out, so as the wire drum immediately the sinker reaches the bottom, has for some time been abolished. It is found, indeed, that, provided the sinker has sufficient rate which will in itself ensure the moment of striking bottom being immediately observed. Thus, as a result, it is no longer necessary for the drum which supports the wire to be particularly light; in fact, now-a-days, it is coiled direct on a co without ony misgivings of its being thereby subjected to too heavy a strain. Similarly, it is more the custom at the present time to place the drum well inboard-rather than as in Fig. 183-even when paying out, thus providing for a good length of wire end water piezometers, as whl as other such instrumeury receive admirable notice in this part of the book. The author has apparently made some use-duly acknow-ledged-of the paper on the subject of "Deep Sea
Soundings," read by Mr. Edward Stallibrass some years ago before the Institution of Electrical Engineers.
We hardly expected to see detailed references to logs
in a book on cable work, but their inclusion is highly in a book on cable work, but their inclusion is highly
suitable. The excellent and ingenious system devised by Lieut. Anthony Thomson, R.N.R., is fully described; but Mr. Wilkinson would have done well to point out
some important advantages in its application to cable some important advantages in its application to cable,
and sounding operations over logs as ordinarily towed, and sounding operations over logs as ordinarily towed, the ship; (2) that, owing to it being supported and kept in the water at a horizontal line, it registers correctly at quite slow speeds. The author then gives an exhaustive very misplaced where it is.
Let us now revert to the course of operations more directly associated with the laying of a cable. To begin
with, Mr. Wilkinson has admirably described and illustrated the different ways of landing the shore end. The figure on page 317 is in illustration of the plan invariably
adopted by the Silvertown Company, and is well adopted by the Silvertown Company, and is well
suited where a heavy surf has to be contended with, or in instances where no lighter is available. Here the cable, drawn on to by a line attached to the ship's picking. up gear, is floated ashore by means of balloon buoys inof casks as first used by that experienced cable engineer, Mr. F. C. Webb, M. Inst. C.E. Under ordinary circum-
stances, however, most authorities consider the lighter stances, however, most authorities consider the lighter
system preferable, provided that the necessary plant is at hand.
In dealing with the gear for paying out, Mr. Wilkinson
has furnished us with a general has furnished us with a general view-Fig. 201-of the machinery designed by the late sir Charles bright. The of this apparatus, duced as a means of checking the cable's egress at a
moment's notice, in the case of sudden necessity, moment's notice,
has on various on the ships to which it has since been fitted. Mr Wilkinson does well in pointing to the evils of V
wheels. When laying a long length in a tropical wheels. When laying a long length in a tropical such an extent that the cable slips off. As with the V wheel the unavoidable fleeting knife of a cable drum is shown in another part of the book. Useful work would be done by the mechanical engineer who introduced some other means of holding the cable in check during paying out than
by the ordinary friction brake-say, by a brake based on by the ordinary friction brake-say, by a brake based on
hydraulic principles-as well as something to replace the fleeting knife, for preventing the fresh turn over-riding. Much has already been done by mechanical engineers to perfect the easy carrying out of cable operations ; but a
departure of the description indicated would be a further and great step in the right direction. Such a reform would be especially to the point just now, in view of the possible
Pacific cable with a section of great length in extreme depths; and also on account of the recent tendency towards heavy cores which involve an increased weight of
iron wire-if the close-sheathed type is to be adhered tothereby increasing the difficulties of sufficient and con-
tinuous brake application. It is quite a question whether something after the pattern of the apparatus-page $149-$ employed in laying the first Atlantic cable had not many advantages over the ordinary strap and lever brake, which
originated in a hand form with Mr. F. C. Webb's design provided that some means of keeping the strain within
bounds-such as that of Appold, adapted by Amos to the necessities of cable work-be capable of application
It would have been well had Mr. Wilkinson presented an illustration of a more modern form of paying-out dynamometer, such as are specially designed for paying
out purposes in being infinitely more sensitive than those
used in picking up. There are seen-to wit, that on board the silvertown, due to Mr seen-to wit, that on board the Silvertown, due to Mr
E. Stallibrass, and another designed by Professor Andrew
Jamieson, F.R.S.E. The book Jamieson, F.R.S.E. The book under consideration
appears to give no account of the excellent method em appears to give no account of the excellent method em-
ployed by Messrs. Siemens Brothers for arriving at a correct measure of the slack paid out during the laying of a cable, by means of a dummy line of sounding wire
This is probably the only right plan for this purpose
but requires close study by those proposing to turn it to
account with any account with any good effect.
We have to
other information relative to cable gear on telegraph ships. Here we find excellent illustrations of the machiapparatus for picking up and paying out from the ship's bows. In one of the appendices, a description and general view of the gear on the new Japanese Government telegraph ship-Okinwa Maru-are given, but these-
evidently from photographs-are of no use whatever in a text-book from a student's point of view. This machi nery, due to Messrs. Johnson and Phillips, is said to combine many novel features, one of which is the brake being connected more directly to the cable drum.

Mr. Wilkinson would have been better advised in making more of the Dacia's picking-up, rather than of her paying-out gear. This ship has done much good work which her picking-up apparatus works, due probably to which her picking-up apparatus works, due probably to
the long crank indulged in on the engine. The whole plant takes up a lot of space, and gives an idea of unnecessary power to some people, but it is just this reserve force which has proved so invaluable when working in deep water with rough bottoms. This gear-designed, like the paying-out gear, by Sir C. Bright many years ago
-is, of course, incomplete in many respects as regards convenience, but in its salient points it is probably inferior to none. Constructed as it was by Messrs Easton, Amos, and Anderson, it is of the best possible workmanship.

We are of opinion that Mr. Wilkinson has rather over done the number of cable ships which he has described which, on behalf of the Telegraph Construction Company, has certainly laid a greater total length of cable than any other, though, with a gross tonnage of 4667 , she come 4917 tons-in order of actual size. However, nothing but the warmest possible praise can be bestowed on the character of these outline drawings of some of the edition Mr . Wilkinson might find it possible to edition Mr. Wilkinson might find it possible to condens all the useful information he can collect regarding the various telegraph ships into the form of a table of an
extended form similar to that which appears in the "Electrical Trades Directory," and in Munro and Jamieson's pocket-book
In Chapter I. the author goes into the question of the capacity of a cable tank. The formula given to find th cubic contents of a mile of cable is, we believe-like that
in Clark and Sabine-seldom, if ever, used in actual practice. A much simpler one is
$\times 33 \cdot 2=$ bulk of cable in cubic feet,
here $d=$ diameter of cable in inches
This was given in the
This was given in the last edition of "Munro and Jamieson." When coiling a heavy type of cable, 40 to
45 per cent. is nearer the amount to allow for waste space.
With
With further reference to the three largest telegraph ships, it may be of some interest to note that the Scotia
was formerly a "Cunarder." The Silvertown-originally the Hooper-was designed, or rather, three tanks of given dimensions were built round, for carrying 5000 nautical miles of hempen cable to carry out the Great Western scheme. This scheme never saw daylight, and now when loaded to her "Plimsol" the tanks of this vessel are only about half full with the types at present in vogue. Her cable machinery was constructed to the drawings of the late
Professor Fleeming Jenkin, F.R.S. The Faraday was deProfessor Fleeming Jenkin, F.R.S. The Faraday was de-
signed especially for this class of work by the late Sir William Siemens, and was the result of a great deal of
thought and attention. Her peculiarity is having bows thought and attention. Her peculiarity is having bows
at each end to render her capable of being more readily
turned about for sounding and cable operations. Like the turned about for sounding and cable operations. Like the Scotia, she is furnished with twin screws, the same object being in view. The most complete description and illus
tration of H.M.T.S. Monarch, appeared in THE En. tration of H.M.T.S. Monarch, appeared in The Engineer at the time she was launched. Mr. W. R. Culley was mainly responsible for her cable gear, which was constructed by Messrs. Johnson and Phillips. She was the first ship, we believe, to have bow baulks built in with
the rest of the vessel, after the plan of Mr. Percy Isaacs the rest of the vessel, after the plan of Mr. Percy Isaacs,
as adopted for all the ships of the Eastern and associated as adopted for all the ships of the Eastern and associated
companies. Whilst dealing with the laying of cables, and in somewhat expanding his remarks, Mr. Wilkinson might have touched on the wickedness of attempting to run the ship at a high speed whilst
paying out. This is, as a rule, limited by fear of accidents, but when quite large tanks are in question, high speeds are sometimes indulged in. This may be
very well from a contractor's standpoint, and has been done with a view to lessening the brake power ments; but it means that the cable is not laid at an angle which provides for it conforming to the undulation of the bottom. We venture to think that very often insufficient
attention is given to the laying of cables in shallow water In our opinion they are frequently laid too tight, owing
to the total weight of cable outboard being comparatively ittle. We think that to avoid this-besides the ship going slow-the cable should be paid out without any
drum whatever whatever, employing only a friction t
Mr. Wilkinson is rather elaborate on the slipping of final splices, but the sketch on page 122 is probably the Under rould of course be quite taut.
tarts off with grapnels, ancient and modern; but mostly modern, we are glad to say. The figures on pages 33 and 34 give an excellent idea of grappling work. The latter is lifelike easy circumstances as regards weather, both for grappling as well as for photography. We would not recommend anyone to attempt dragging for an old cable in deep three knots, as mentioned in a general way by Mr. Wilkin-
son; though, of course, under other conditions it might turn out all
In the somewhat full reference to underrunning beautifully illustrated on page 55-it might have been well to mention that, though this plan in a light boat has been found serviceable by Mr. F. it is certainly a hazardous pro cess when performed by anything like a heavy steamer. In the pages of this book Mr. Wikinson has concisely he mand buoying. He might, however, with advantage have given more information with reference to the various descriptions of ropes, connecting chains, \&c., as employed in cable work generally
On the subject of beach cables and underground lines, hr author introduces useful excerpts from a report of Mr. Charles Bright, F.R.S.E. He also alludes how ever, could have been obtained from a sketch. The Eastern Company's excellent system of running their beach cables and connecting lines-between hut and ffice-into pipes filled with water receives fuld descond Taylor, the eminent consulting engineers. In the event Taylor, the eminent consulving engineers. In the even of the above method being inconvenient or impossible, a
trench should be dug on the beach of such a depth, and in such a manner, which would assure the constant supply of water round the cable right up to where it runs into the hut.
Unfortunately, it is very much the custom unduly to hurry over this part of the work. The ship being always anxious to get away and lay the cable, leaves hurried instructions which are sometimes only partially under stood or attended to, the eventual result often being a fault on the beach or in the hut, after, perhaps, a skilled electrician has been sent out many miles for the express purpose of localising it. Such a fault, it is true, is a less expensive matter than one in deep water; but by he beach cable more time for the effient instave avoided These seemingly small matters should not, we think be lost sight of in connection with undertakings of this nature.
Having now dealt with the main substance of the book, in so far as it concerns the engineer, we cannot refrain, in which he has dealt with the subject, especially in view of the varied methods of procedure resorted to by different engineers.

UGGESTED TERMS OF AN ALLIANCE BETWEEN THE SOUTH WALES AND MONMOUTHSHIRE COALOWNERS AND COLLIERY WORKERS.

The following is the text of the workmen's scheme for preventing the underselling of coal in Wales :-
(1) The object of the alliance shall be to secure such prices for
coal as will guarantee a reasonable profit to the owner and fair wages to the workmen.
(2) It shall be a recognised principle of the alliance that both
profits and wages shall always be so regulated as to insure only fair and reasonable prices for coal, so that the South Wales trade may not be endangered by such excessive charges as to directly (3) The workmen shall be paid a minimum wage upon the standard (4) To secure the object of the alliance, there shall be an undertaking by both parties to support each other in any reasonable and
proper manner for the purpose of enabling them to resist mutually
the attempts of any who may try to make the South Wales and the attempts of any who may try to make the South Wales and
Monmouthshire mining industry inadequately remunerative to
one or both parties-either by selling coal below the price agreed one or both parties-either by selling coal below the price agreed
upon, or by directly or indirectly reducing wages below the
standard rates recognised by the owners and the workmen at the other collieries working the same seams.
(5) It being well known that prices are now materially reduced
by speculative middlemen, who contract to sell coal before they by speculative midd, emen, who contract maker shall montracts with such
have purchased it, no employ
middlemen, unless they have obtained a quotation prior to the scale. (6) This undertaking shall include a pledge on the part of the owners not to employ any but skilled workmen, and on the part of
the workmen not to work for any but associated coalowners, or those who-although not members of the association for the time being-are prepared to sell coal at the prices agreed upon by the
federated coalowners.
(7) Should it be necessary at any time for the maintenance of the principles of the alliance to call out the workmen employed by
any colliery owner or owners, such workmen shall be jointly sup ported-by the owners making every effort to give employment elsewhere, and by the workmen giving financial suppor
(8) It shall be distinctly understood that the alliance shall in no
way interfere with the right of the employer to maintain entire way interfere with the right of the employer to maintain entire
control over the internal management of his own colliery ; neither shall the alliance prevent in any way the employer from intromethod does not carry with it a reduction in the wages of the
(9) For the purpose of fixing the selling price of coal at a point that will permit the agreed upon minimum wage, a a computation
shall be made of the average cost of production for the whole of shall be made of the average cost of production for the whole of
the coalfield for the last three years, either by taking the cost of production for each colliery or a selected number of collieries upon, and the average cost, taken with the minimum wage, shall
establish a minimum selling price for the different kinds or seams (10) The selling price of coal above this point to be fixed by the
associated owners from time to time ; and for the purpose of maintaining the agreed-upon fixed price of coal above the minimum,
the workmen agree to co-operate with the owners to prevent unde the workmen agree to co-operate with the owners to prevent und
selling upon the terms incorporated in the foregoing clauses. (11) That the working of the double shifts in mines, except in
case of ewergency, be considered a violation of the principle of this scheme.
(12) This alliance shall form part of the present sliding scale agree ment of any future sliding scale agreement or other system of agreeshire coalowners and workmen, or their respective representatives, as a method for regulating wages and other matters pertaining to

TUDSBERY'S PATENT DIFFERENTIAL RE CORDER FOR GAUGING WATER.
The employment of submerged orifices for the measurement of water issuing from still ponds involves in practice the simplest of the hydraulic principles applicable to that
branch of hydrometry. Nevertheless these orifices are still branch of hydrometry. Nevertheless these orifices are still
sufficiently uncommon to merit special consideration by engineers in charge of water supplies-whether for municipal, industrial, or irrigation purposes. The submerged
orifice is usually rectangular, and is formed in a thin metal orifice is usually rectangular, and is formed in a thin metal
plate set vertically in the wall of the still pond, out of which plate set vertically in the wall of the still pond, out of which the water to be measured issues. It is situated at such a depth as to be under all conditions entirely below the surface
of the water, not only of that in the pond referred to, but of the water, not only of that in the pond referred to, but also of that in the basin or receptable into which the measured
flow is discharged on the opposite- downstream - side of the plate. Under these conditions the water discharged through the orifice is accurately measured
lattere and the head or differlatter and the head or differeace of level between the water
surfaces of the still pond and the
basin. basin; and, asin every case where
water issues through such opanings, a coefficient of discharge, determined by experiment, forms a third factor of the formula. This expression is-
$\mathrm{Q}=\mathrm{CA} \quad \sqrt{\mathrm{H}}$,
where Q denotes the quantity of witer passing through the orifice per second, or other unit of time; A denotes the sectional area of the orifice; H denotes the head, or difference between the water levels in the pond and the basin; and C is the coefficient of discharge
d termined by experiment. d , termined by experiment. appears in all formule for the appears in all formula for the
measurement of water by weir measurement of water by weir oes notch or orinice; and in every which render its variations exceed. which renderits troublesome, , if not indeter-
iagly
minate it is initiall dependent minate. It is initially dependent upon the form of the vena con.
tracta of the issuing stream; tracta of the issuing stream;
which, with a sharp-edged plate which, with a sharp-edged plate
of given thickness, is governed by the form and length of the wetted perimeter of the notch or orifice. It is therefore readily seen
that a weir or notch of the that a weir or notch of the length, and in the ratio of its length to the depth of the str am of water flowing over it, a most important character when the quantity delivered by it varies from time to time. Consequently, measurements of discharge by overfall weir can only be relied upon when it takes place under the conditions of previous careful trials made with that or with a similar apparatus. The application of the ordinary weir formulw
given in text-books to the generally dissimilar cases which given in text-books to the generally dissimilar cases which
occur in actual practice, is fraught with a risk, and frequently occur in actual practice, is fraught with a risk, and frequently
with a certainty of inaccuracy surprising in amount. It was with a certainty of inaccuracy surprising in amount. It was
there the question of the trustworthiness of gaugings must generally be largely dependent upon the number and importance of the variable elements covered by the coefficient of discharge.
Such complexities are comparatively absent from orifices completely submerged, which, with a constant section, possess the additional advantages of causing only a part of the loss of head involved in the use of weirs or other - freeorifices, and of being uninfluenced by wind or by variation of the water level in the basin receiving the discharge, which may, even without "drowning a weir gauge, cause entire dislocation of the conditions of its discharge.
As regards accuracy of gaugings in relation to observations, it cannot escape notice that the weir gauge formula involves formula of that portion of the head which enters into the formula for the orifice gauge ; a fact which renders it with the latter apparatus is insignificant in relation to a like error in the cass of the weir gauge. It may well be enquired

Fig. 1-Tudsbery's recorder
why, if the submerged orifice presents such advantages over other forms of gauge, its employment is not universal? There are two principal causes of this :-Firstly, no doubt whilst popular acceptance of hydraulic laws is slight and superficial, a visible flow from a gauge discharging freely in air must appear so convincing in fact as largely to overcome any
doubts as to its shortcomings in definite result; whilst, in the doubts as to its shortcomings in definite result; whilst, in the
second place, the measurement of the head in the case of submerged orifices has hitherto generally been made the sub-

heir relative motion on any desired scale in a single pen or pencil of the kind with which recording gauge apparatus is ordinarily equipped. It will be understood that by the use of two pencils, one fixed to each float, the head would be measurable by the difference in the space separating the two traces, but Dr. Tudsbery, by using one pencil on the right of the head is measured by the space between the base line on
the the drain and the pencil trace
This contrivance enables the head, or relative water levels, to be measured directly in a single operation, no matter how the absolute water levels on either side of the orifice may vary. It was originally invented for a special
purpose by Dr. J. H. T. Tudsbery, and the form in which it purpose by Dr.ed to ordinary gauging purposes by Sir W. H. has been adapted to ordinary
Bailey is illustrated in Fig. 1 .
Bailey is illustrated in Fig. 1 . The determination of the coeffients of discharge prop to such vertical submerged orifices as are referred to, has been within the last few years made the subject of careful inquiry by several investigators, among whom may be specially mentioned, Mr. T. G. Ellis and Mr. Hamilton smith. Reference to the work on "Hydraulics" by the latter engineer will convince any person of the importance attaching to the question of gauging by means of orifices, and officientse that has been exercised to obtain trustworthy co enfients of discharge applicable to them. For the coefficients applicable to larger submerged orifices, such as are met
with in river, canal, and dock works, the investigations of Mr. R. H. Rhind, published in the "Minutes of Proceedings of the Institution of Civil Engineers," vol. lxxxv., may be consulted with advantage; whilst many valuable isolated data are found in the pages of occasional papers and essays treating of particular hydraulic works.
The recorder may be described as consisting of a cast iron lathe bed on legs. It is fitted with an eight-day pendulum clock beating seconds; the drum is 42 in . in circumference, revolving once in seven days, giving in. to the hour on the
diagram, the drum being 14in. long, recording a difference in level of 2in. to the foot for a fluctuation of 6 ft . Of course, theso measurements may be varied according to the delicacy of the diagram required. Arrangements have been made for the sole manufacture with Messrs. W. H. Bailey and Co., of the Albion Works, Salford, Manchester, who have a number of recording instruments in course of manufacture at present, their design having been accepted by the Western Australian
Government for tide gauges, and also by the Fisheries ComGovernment for tide gauges, and also by the Fisheries Com-
mission of the United Kingdom for recorders for indicating mission of the United Kingdom for recorders for indicating
the fluctuation of rivers, \&c. One of Tudsbery's patent the fluctuation of rivers, \&c. One of Tudsbery's patent
recorders has not long since been fixed at the mouth of the recorders has not long since been fixed at the mouth of the
river Weaver to indicate or record the quantity of water flowing through from the Manchester Ship Canal, according flowing through from the Mranch
to the Parliamentary conditions.

THE COAL SUPPLY OF LONDON,
On Saturday last the newly-formed syndicate trading as William Cory and Son, Limited, and embracing the following firms: Messrs. Lambert Bros., D. Radford and Co., Beadle
Bros., Limited, J. and C. Harrison, Green, Holland and Sos., Mannted, Jeorge and Co., G. J. Cockerell and Co., Simited, and Wm. Cory and Son, invited a number of gentlemen to pay a visit of inspection to their numerous rapid Bug unloading and barging of coal on the river. At 50 to 200 tons of fuel were moored, all either loaded with or waiting for coal from the derricks. These interesting appliances are nothing less than large floating vessels fitted with complete hydraulic and electric lighting plants. One of these derricks which was inspected is divided up into sixdy water--iges thre different types, vitherdinary hydraulic cranes of three different types, viz., the ordinary
swinging crane, the overside crane, and the luffing crane swinging crane, the overside crane, and the luffing crane. the same time, and some 5000 tons of coal placed in barges the same time, and some 5000 tons of coal placed in barges
in twelve hours, each bucket of coal being weighed at the moment of rest before tipping. Buried in the iron compartment is a complete engineer's repairing shop. Each derrick contains-besides the hydraulic machinery, cranes, and accumulators at either end, weighing 40 tons each-ten boilers, for driving the machinery. Electric current for supplying light, not only on deck but also in the holds of the colliers or lighters, is supplied by one of two steam dynamos.
At Charlton the building of barges is conducted at Messrs. Cory's works, and here the party was enabled to inspect one of this firm's seagoing lighters, which have now been in all weathers. These listers have ses cities years in all weathers. These lighters have capacities varying
between 350 tons and 1000 tons each. They are built of steel, with a water-tight compartment at either end, and are provided with steering gear, so as to be able to take care of themselves should they become adrift. At the Victoria Dock one of the finest steam colliers belonging to the syndicatethe Harpalus-was open to inspection. This vessel is 247 ft , long by 35 ft . beam, 16 ft . depth of hold, and draws, when fully loaded, 16 ft .6 in . She has a carrying capacity of 2020 tons, and is driven by a triple-expansion engine of recent design. The storage capacity at these docks alone is about 50,000 tons, and the jetties are fitted with hydraulic cranes for discharging three colliers simultaneously. At the entrance
to the Albert Dock Messrs. Lambert's jetty was visited, and at Tilbury Messrs. Harrisons' new cranes, recently built by Sir W. Armstrong, and having a radius of 47 ft . 6 in., were seen at work. Alcogether the associated firms have a fleet of thirty-one steamers, ten sea-going lighters, twenty-five tugs, That they have the power largely to infure market of the metropolis must be evident and it is coal hoped that their combined strength together with the extra facilities which will be availeble for handling the material will be used to reduce the enormous profits which are made between the pit's mouth and the consumer.

The Civil and Mechanical Engineers' Society paid their second visit to the new dock of the Sarrey Commercial Dock Com-
pany on Wednesday, September 23rd, and afterwards inspected the grain warehouses and pumping plant of the company. The new dock, when complete, will be 2500 ft . in length, and have a depth of 27 ftt . over the sill. Mr. J. Wolf Barry, C.B., M. I.C.E., is the engineer to the new dock, and Mr. J. Gaskell, M.I.C.E., is the engineer to the company. The former was represented by
Mr. Wales, who courteously showed those present over the new Mr. Wales, who courteously showed those present over the new
work, and the latter kindly conducted the party over the grain

HE TORPEDO BOAT DESTROYER DESPERATE.

A sLight defect having made itself apparent towards the end
of the official speed trial of this vessel -built by Messrs. J. I. mernycroft and Co., Chiswick- made on September 4th, a supple
mentary trial of three hours' duration was undergone by her on mentary trial of three hours' duration was undergone by her on
Thursday, the 24 th inst., the conditions being the same as those
observed on the first occasion, viz, that the boat should have on observed on the first occasion, viz,, that the boat should have on
board a deadweight of 35 tons, exclusive of her ordinary equipment that six consecutive runs on the measured mile should be made
the Maplin, during which the number of revolutions were to noted, indicator diagrams taken to ascertain the horse-power
developed ; and that the consumption of coal during the trial should developed ; and that the consumption of coal during the trial should
be determined
The results of the speed trial on September 4th were as follows:-

It will be seen from these particulars that the conditions laid down It will be seen from these particulars that the conditions laid down
by the Admiralty as regards speed, \&c., were most satisfactorily
fulfilled, and the coal consumed $-2 \cdot 43$ lb. per indicated horse power -was actually less per horse-power per hour than was the case at the fuel-consumption
columns at the time.
The result of Thur The result of Thursday's trial proved that the slight defect had
been made good to the entire satisfaction of the engineer officers responsible for the final acceptance of the boat, and Messrs. Thorny-
resper responsible for are to be congratulated on being the first of the
croft and Co. are the contractors competing for the construction of this class of vessel to
attain the high speed reached under the onerous conditions imposed upon them.
The Admiralty were represented by Fleet-engineer W. J. Harding, The Admiralty were represented by Fleet-engineer W. J. Harding,
and the contractors by Mr. C. W. Keighley, the machinery being, as usual, in charge of Mr. George Brown.
The Desperate, it will be remembered, is the first of the batch of

30-knot "destroyers" ordered last year by the Government, and as
she has thus been successfully tried and completed, a large addition o the Navy will shortly be made by the firm in the same class of
vessel. Messrs. Thornycroft have in hand for delivery to the Admiralty
in the autumn of next year H.M.S. Albatross, the guaranteed speed in the autumn of next year H.M.S.
of which is to be 32 knots per hour.

$$
\overline{\overline{-2}}
$$

colonial samples exhibits.
 the intention to follow it by that of foreign samples from oother
Colonies. A second series has now been prepared, the contribution sent to this country for the Australian Colony of Victoria having been selected for this. The number of these is somewhat
restricted as compared with that supplied by the associated West restricted as compared with that supplied by the associated West
Indian Colonies ; but it, nevertheless, possesses some features of
special interest, special interest.
Foremost am
Foremost among these must be reckoned the evidence afforded
by this collection of the care and forethought shown by foreign compe titors in adapting their exports to the special requirements of the
locality for which they are destined. There is a marked ditinet ocality for which they are destined. There is a marked distinction to
be observed in the character of the tools, for instance, supplied for be observed in the character of the tools, for instance, supplied fo
the Victorian market when these are compared with those shipped
or sale in the West India Islands. In the lomer for valorian market when these are compared with those shipped
for sale in the West India Isands. In the latter instanee the
labour is nealy entirely that of the coloured races. The physigue labour is nearly entirely that of the coloured races. The physique
of these would not be competent to the handling of tools of a very
colid, and consequently heary solid, and consequently heanty conaracter, and of the German and
American manufacturers, it was evident from thecharacter of thetool American manuacturers, it was evident from the character of thetools
supplied by them, had not lost sight of this fact. The conditions
of labour in Victoria differ entirely the supplied by them, had not lost sight of this fact. The conditions
of labour in Victoria differ entirely; there, almost without excep-
ton, the handicrafts are pursued by Europens the tion, the handicrafts are pursued by Europeans, these, again, , being
chiefly of British nationality. We find, therefore, a marked increase both in weight and of strength in the tools shipped from the two countries above-named, for their use. And corresponding to twot that
cocrease there is manifest a quality superior to that of the toat corease there is manifest a quality superior to that of the tool
for West Indian use, this being doubtless thought to be required to satisfy the more experienced criticism of the European workman.
Both these differences have naturally cuused the prices satisfy the more experienced criticism of the European workman.
Both these differences have naturally caused the prices quoted to be

than those upon which we adversely remarked in the West Indian exhibits; but then their prices were double that previously quated.
But even at that increase they were decidedly of good value. I. ther directions the United were decidedly of good value. In
States manufacturers show stron competition, and much notice was antracted to a small lawnSomething of the same low-priced and light kind is a desidera tum among many home horticulturists in this country. Again oreign manufacturked that in theied of our system of packing Every household is a
considerable consumer of tacks and the chasing these, would certainly be attracted by the neat little wooden to come in handy, when emptied, for many house these being sure
We shall We shall not venture to enter with any detail upon other depart
ments of this show, in which Germany land are chiefly represented. Germany, France, Belgium, and HolCor her exhibits of such trifling but useful matters as hooks and trress wives of our colonists. But it is in the matter of glassware,
perhaps, that perhaps, that the exhibit shows how severe a competitor our
manufacturers must have in Germany; Our colonists are often
"thirsty souls," and her "thirsty souls," and the replacement of breakages of soda-water ture. These tumblers, we notice, the German makers supply of quite sunticiently good quality for ordinary use at 1s. 3d. the dozen
t.o.b. Antwerp, while Belgian cut aup
2s. 2 d . per 2s. 2d. per dozen under similar conditionss as to shipment. It is
needless that we should enter further into particulars. We need only say that we were much gratified to observe that on this second
occasion the interest taken by our own manufacturers only not diminished, as compared with the first, but that even or by their of its opening the rooms were well attended by them which their special interest lay.

A resolution was passed at the inaugural meeting of the convinced that the trafic on the Thacomesion is greatly impeded by the the present
condition of the river, considersit deseirable the condition of the river, considersit desirable that a threee.quarter titala lock
be constructed at a point between Putney Bridge and Wandsworth Mill."

THE FEDERATED INSTITUTION OF MINING ENGINEERS.
In continuation of the report which we commenced last week of the Cardiff meeting of this Institution, we now pass to Mr. W. D. Wight's paper on

Automatic Varlable Expansion Gear applied to Balanced Slide Valye Winding Engines.
The arrangement suggested is illustrated below, and is thus described by the author. The main valve A is of the slide valve type, with a balance plate B on the back to relieve the pressure of steam. It is preferably made
wedge-shaped in section, so that the steam may be wedge-shaped in section, so that the steam may be applied to the top and the bottom of the valve, except for the two strips of metal
upon which it slides. The upon which it slides. The
wide end of the wedge is placed downwards. The area exposed to steam underneath the valve is greater than the area of the top of valve, so as to perfectly balance it. The valve is extended beyond the face of the ports, and steam passages are carried through it, toallow the cut-off valves $\mathrm{C} C$ to encircle the main valve. The expansion valves, of which there are two, C C, upon each main valve, are simply hoops sliding upon it, having the power to close the steam passages through the main valve. The motion of the valves by means of the gear may be described as follows :-The main valve is actuated by a spindle E F attached to an ordinary link motion; but for the purposes of the expan-

the air to fill the dash-pot. The tripping of the expansion valve is accomplished by a projection forming part of one of the toggle joint levers coming into contact with a stop the position of which is regulated by a governor set to the required speed. It will be understood that during steam admission the joint is always straight, and during steam admission the joint is
expansion it is always bent.
An indicator diagram, taken from a winding engine shows that the expansion is varied according to the load and speed, and that even in a winding engine the speed can be controlled with certainty. Among other advantages it is claimed that the valves, having all plane faces, are capable of adjustment; the valves, being

The meeting did not take quite such a favourable view of the arrangement as Mr. Wight. Turning to that gentleman's other paper on

Anthracite Coal Breaking and Sizing Plant at Glyncastle Colliery,
we now give illustrations and description of the Klein screens, reserving the tippler for some future occasion. The tippler is constructed so that it travels at the variable rates. The first 11 seconds are occupied in inverting the full tub, the coal then commences to fall and continues falling until the 26th second, then there is a very rapid recovery, the final two periods bringing the tippler to rest.
Turning now to the Klein screen (see engraving) it will be seen that the triangular crank-piece C , on the driving shaft B , is attached to the screen frame at A. At D this crank-piece is suspended by links from the bearings F. As a result of D being suspended, A describes an oval curve, the shape of which depends on the position of points $\mathrm{A}, \mathrm{B}, \mathrm{D}$, and F . In order to transmit this same oval motion to all points of the screen, a parallelogram is adopted:- $\mathrm{A}, \mathrm{D}, \mathrm{D}^{\prime}, \mathrm{A}^{\prime}, \mathrm{D}^{\prime}$ being suspended from a bearing F^{\prime}, and connected to the screen at A^{\prime}. The points D are hung by means of the links E from the bearings F , and are connected by the tie-rod H . I, I are connecting-rods between H and H^{\prime}, and $H^{\prime} H^{\prime}$ are con nected to the frame of the screen by means of suspension rods K . The whole arrangement is fixed to the frame K . The screen is fixed horizontally, but owing to the compound link gear motion, which the diagram below explains, the coal is gradually worked toward the delivery end.

THE IRON AND STEEL INSTITUTE.

(By our Special Commissioner.)

The Ormuz left her anchorage at Bilbao on the morning of September 5th, and proceeding at easy speed to the westward, arrived at the second halting place of the programme, Santander, about midday. The intermediate coast is of a very forbidding character, with rocky slopes rising in the peak of credo to a heigit or in 200 . whin a mile of the she, bit broken at interval into deep creeks, or where the headlands are so placed a to afford shelter from the prevailing westerly swell, giving secure harbours, like that of Santona, or the smaller one o Castro Urdiales, with its old-world castle and fortress-like church perched on a rocky promontory, covering a narrow anchorage, which in the early years of the century was a well frequented sheltering place for privateers, and after a long interval of quiet existence as a fishing port, has o of late years again become active as a shipping place for the iron ores, raised in he district, munication with the Bilbao River. Special loadin arrangements for this purpose having been adopted, and at other places-a notice of which will be given on a future
The city of Santander, the most important trading centre in the north of Spain, forming the port of departure for the Transatlantic steamer line, extenas fo about $1 \frac{1}{2}$ miles along the north shore of a broad, but rather shallow bay, through which a deep-water channel has been dredged, and the water front is faced by lines of stone quays, allowing large ships to come alongside in places. Some disappointment was therefore felt, an found expression in the local journals, when it was found that the Ormuz was not coming into the harbour; but this step, however desirable it might have been, could not be taken, because the only available moorings were occupie by the guardship, the heavy cruiser Alfonso XII., and a large troopship, about to sail with reinforcements fo Cuba, so that it was necessary to remain in the road stead, outside the lighthouse point, and use the tende Bilbao for landing and embarking. Wednesday after noon was devoted to visiting the town and the watering place of Sardinero, in the bay, where a reception wa held by the local committee; and the festivities were continued in the evening by illuminations, open-ai concerts, and theatrical performances, the townsfolk bein as enthusiastic in their greetings as their neighbours at
Saturday, September 6th, was given up to visiting the mineral deposits near the town, for which purpose the mem bers were divided into five groups, the three largest going to the iron ore workings, a fourth smaller one to the zinc ore workings or Reocin, and the last, which was exclu sively a pleasure party, to the inland watering place of Fuente del Francis, the whole being so managed as to return to the ship about 6 p.m.
The iron ore workings are situated in two principal localities, namely, Camarge Hill, about $6 \frac{1}{2}$ miles, southwest, and the Carbarga Mountain, about the same distance south of the town. In the latter, which is the more largely developed of the two, the ores are found in the flank of a line of limestone hills, about four miles in length east and west, as concretionary masses and nodules interspersed in clays, the largest development being at the western end of the ridge in the ground occupied by the Obregon and Cabarceno mines. In the first of these groups, owned jointly by the Vizcaya-Santander Mining Company and Mr. J. MacLennan, the ore-bearing clays extend through the low ground, and to a considerable height on either slope of the hill, the deposits being of irregular shape, and varying from a few feet to several yards in thickness, while in some of the hollows between the spurs of the hill as much as 185 ft . has been proved by boring. The floor is formed by a bed of dolomite, very irregularly worn into hollows and projecting points, below which the compact lower cretaceous limestone is found. The workings at present are confined to the north side of the hill, the
ore-bearing clay being dug along straight faces from 19 ft . to 26 ft . vertically apart, and connected together by zigzag lines of railway on a gradient of 1 in 30 . The stuff loaded into wagons carrying $2 \cdot 6$ tons each, of which thirty
three form a train, is drawn by a locomotive on a falling incline of 1 in 50 for $2 \frac{3}{2}$ miles to the washing place at
Solia, in the marshy ground on one of the streams Solia, in the marshy ground on one of the streams
flowing into Santander Harbour. Here the clay is disaggregated by jets of water under pressure from 3 in .
hose pipes, and passed through a riddle which keeps back the larger lumps, the fine stuff and clay going through to the washers. These are cylinders 21 ft . 3in. long.
7 ft . 2 in . diameter at the end, with a conical delivery end, supported on friction rollers and receiving motion by spur gearing. The mixed ore and earth are separated by a constant How of water; the former is led forward by an inwater flows out at the other, carrying with it a considerable proportion of finely divided mineral, which is
collected by sizing boxes and current apparatus, and subsequently rewashed, so that only about 5 per cent. is sequently rewashed, so that only about 5 per cent. is
finally lost. The bulk of the washed ore is like gravel in size. 306 tons of washed ore in ten hours, the yield of the clay being about 21 per cent., exclusive of 40 tons of fine by launders to a settling ground in the marsh, where the by launders a settling ground in the marsh, where the sack to the river. The pised, and the clean water hows extension of the railway of about three miles to the shipping pier at Astillero, at the head of the bay, where there is a depth of 15 ft , at low spring tides, a can be loaded in the day.
The San Salvador Iron Ore Company's mines lie to the east of those of Obregon, the conditions of occur-
rence of the ore being generally similar, but the workings are on the southern slope, which necessitates hauling the stuff to the washing place, across the hill. This is done by an endless chain railway of 18 in . gauge, two miles and 66 yards long, divided by ank stations into six sections, the load on the south side being
assisted by engine power through a rise of 345 ft . assisted by engine power through a rise of 345 ft .
to the summit, and travelling down on the north side 893ft. to the washing place on the low ground. The side sinft. to the washing place on the low ground. The
washing plant is similar to that at Solia but somewhat smaller, and without the separating "grizzly." About 600 tons of earth are washed at the per day, producing about 120 tons of ore with 57 to
59 per cent, of iron. The average yield of the earth is 6 cwt. per cubic yard,
The Camargo Mines, worked by Messrs. William Baird and Co., yield a Rubio ore with 50 to 54 per cent. of iron by quarrying, as at Bilbao, but about 10 to 15 per cent.
of the small stuff is, after preliminary selection and of the small stuff is, after preliminary selection and
screening, washed in a paddling machine or trough washer, with beater arms, to which the old French name of patouillet is usually given. These ores, unlike
those of Bilbao, are products of the alteration of iron those of Bilbao, are products of the alteration of iron pyrites, and not of carbonate of iron; while the pebbles on the spot, and not rolled masses.
The composition is shown by the following analyses of a cargo of Obregon ore shipped in June, 1895, to the Dowlais Company, per Jane:-

The approximate output of washed ores from the river adjacent to Santander, was in 1895 about 125,000 tons
from Cabarga, and 16,000 tons from Camargo, the total from Cabarga, and 16,000 tons from Camargo, the total The party visiting the Asturiano Company was rather a small one, as the distance rendered an early start necessary. The first stage to Torrelavega was travelled on a new narrow gauge rail-
way going to Cabezon de la Sal in the direction of the Asturian coalfield. Here they were met by the general manager, Mr. F. Buhse, and other officers of the company, and drove to the mines at Reocin, about three miles distant. These, like all the other mineral enterprises in the district, are open workings on a bed of dolomite overlying the fossiliferous limestones of cre-
taceous age, which extends nearly east and west for taceous age, which extends nearly east and west for
about two miles, with a breadth of 120 to 150 yards, with a southerly dip. Where least altered in the deeper galena, blende, and pyrites which, nearer the surface, have been changed to carbonates of zinc and lead, and brown iron ore. The zinc carbonate, which is the
most valuable mineral, occurs to some extent in lumps, of a spongy texture, which only require calcination in kilns, but mostly as a white earthy mass, intimately mixed with clay, brown iron ore, and other matters, before it is fit for smelting. The calamine earth follows the surface of the dolomite, which is extremely irregular, and as it varies considerably in composition, as well as in thickness, the workings appear to be of a very un-
systematic character, the best guide being the colour of the ground, a whitish tint being taken as indicating the presence of calamine. When this appears a level is
driven into the bank and timbered, rails are laid, and a train of wagons is run in to receive the over-burden, which is stripped and thrown down through a hole in the roof of the level, loaded into the wagons below, and drawn to the waste tip, the ore stuff, when cleared, ings are at some height above the valley, so that the without pumping. The opening left after the removal of the mineral ground is of a very remarkable character, it being filled with large pillars and tumbled masses of dolomite, in which several shafts and levels, dating back to the period of the Roman occupation, were found in the earlier years of the working.
The dressing floor, which is connected with the mineral
workings by a double line of railway of 3 ft . 3 in. gauge, is of very considerable extent, including crushing, sizing, jugging, and sluice washing plant, driven by a horizontal
engine of about 120 -horse power by Messrs. Tangye and The bulk of the material, however, being of a soft and incoherent nature, the crushers are principally used the calamine stuff requiring only sizing and jigging, while the finer earth goes in great proportion to the slime washers, which are round bundles, the largest being
of Linkenbach's pattern, 33 ft . in diameter. The finished slimes, however, carry a considerable quantity of brown slimes, however, carry a considerable quantity of brown minerals, limonite and calamine, are nearly of the same density. A proportion of small coal is therefore added to the mixture, which is charged into a reverberatory is slowly hoded in tha and aper the that when the col is innited it is but by ous from that when the coal is ignited is burnt by oxygen from me feric oxice whe bocity of the tue st magnetic oxide. The capacity of the to magnetite is then possed in a number of ever stream over a number of revolving brass cylinders having a portion of insir surfaces magnetised by a series oll electro-magnets inside. The magnetic particles in falling are attracted rom the stra cylinder to a hopper placed below, whero the contact butch, while the magnetic oxide falls into a separate hutch, whi receptacle
 obtained, this is lifted by an elevator to a pair of crushing rolls, and the ground stuff passes into Siemens separator, which is similar in principle to that already described, except that separ thon place inside a rotaterial being discharged of outside,
The material separated is a fairly good iron ore, as shown by the following analysis

But the finely divided condition makes in difficult to use, so that 10,000 tons have accumulated since the electric separation was practically introduced.
The largest pieces of calamine are burnt in kilns very like ordinary lime kilns. The finished mineral is sent by a metre-gauge railway, $5 \frac{1}{2}$ miles long, to the pier at the
mouth of the Suances River, on the coast, a few miles west of Torrelavega, whence it is shipped to the company's smelting works in France and Belgium. The present annual output is about 15,000 tons, derived from about ten times that quantity of ore stuff and waste excavated. About 600 tons of lead ore are also saved, which go to the company's works at Renteria, near San Sebastian.
The consumption of water in the dressing operations is very large, about 1300 gallons per minute being required
to keep the whole plant at work, and this cannot always to keep the whole plant at work, and this cannot always
be obtained in dry years. A very elaborate system of settling ponds and reservoirs has, therefore, been esta-
blished on the hill side, about half a mile from the works where the water rapidly clears and is pumped back.
On the return of the members to the Ormuz the events in the official programme were exhausted, and the subsequent proceedings leave little to be noticed. Leaving reached early on Sunday morning, and the day was
variously spent, either in the town, which has now become one of the finest watering-places in Europe, or in the numerous picturesque places in the immediate neigh bourhood. Prominent among the latter is the old fortified town of Fuenterrabia at the mouth of the Bidassoa,
opposite to Hendaye on the French side, which has lon opposite to Hendaye on the French side, which has long
been famous for its old and war-worn look, with its stately houses deserted and abandoned. This, however, ha decidedly changed; for though the old picturesque place
still remains, it has considerably freshened up. The still remains, it has considerably freshened up. The
deserted houses are now exceptional, and a smart new deserted houses are now exceptional, and a smart new
watering-place has arisen at its gates, while a very common-place tramway saves the wanderer the walk of three miles across the plain from Irun. The greatest of Passages, which has been dredged and otherwise improved so that large steamers can enter or leave at the trade of the north of Spain now passes through it On Monday, September 7th, a small number of the
members took advantage of an invitation kindly offered members took advantage of an invitation kindly offered
by Messrs. Griffiths, Tate, and Co., to visit the iron ore deposits at Cerain. Leaving San Sebastian early in the morning by train on the North of Spain Railway, the
station at Beasain, about twenty - five miles distant, was reached at $8.30 \mathrm{a} . \mathrm{m}$. . and Mutiloa, about three miles from the mines, by about an hour's drive. rough paths and along hill sides covered with broom and heather, until the mines were reached, the deposits consisting, apparently, of large masses of compact brown which inded between shales below and a limestone above, these latter where the brown ore is associated with sulphate of baryta These original workings have been completely abanthat it a long time, and it is only within a few years which have yielded fairly good results upon the tria cargoes selected from the waste lying about. For blish a communication by ropeway and lary to esta with the main line at Beasain, whence the ore could
be readily sent for shipment to Passages. This is rather a long lead, and disadvantageous when compared with the mines lying nearer the sea, but it seems likely that these mines may be of considerable value at some
future time when those more favourably placed have been future time when those more favourably placed have been
exhausted. The situation in the heart of the mountains dividing Gup ine situation in the heart of the mountaine dividing Guipuzcoa from Navarre is a very stith ing one,
and the interest of the locality, together with the fine
weather and the excellent provision for refreshments made by the entertainers, combined to render this one of the plensa pleasantest of the visits made during the trip, although it was certainly the most tiring one. The party returned night, the Ormuz having left for San Jean de Luz, where they rejoined her the next day.
Saint Jean de Luz is an artificial harbour formed by moles extending from the shore on either side, with an isolated breakwater, like that that of Plymouth, in the bay between the the nature of the entrances and the captain of the Ormuz to go into the harbour. The ship therefore, remained in the open bay, favoured by con tinued fine weather, although there were not wanting A visit to the Forges de l'Adour, near Bayonne, which had been proposed for Wednesday afternoon, was therefore arranged for the morning of that day, the party leaving the ship early by rail to Bayonne, and theo three miles along the right bank of the Adour to the works at Le Boucau. These works form a branch of the Saint Chamond Company of St. Etienne, or to give the full title, the Com-
pagnie des Haut Fourneaux Forges et Aciéries de la pagnie des Haut Fourneaux Forges et Acieries de la firm of Petin Gaudet and Co. They are essentially steel works, using both the Bessemer and Siemens processes with the pecullarity that none ore and the on from spain and the coal from England, the latter being coked on the spot in Coppee ovens, the coking gases and those from the blast furnaces being nearly sufficient to supply the naces of 67 ft by 161 ft of the Buttgenbach form, with nacesing charging platorms, and other top fittings carried by and manganiferous ores from mixtures of between 60 and 70 tons each of pig iron, whose composition varies within 70 tons each of pig iron,
the following limits :-

Carbon Manganese Silicon Phosphorus Sulphur

The steel-making appliances include three 9 -ton Bessemer converters and two 15 -ton Siemens furnaces, of
the original pattern. The range of products is a very wide one, from extremely soft iron of Swedish quality used by the local smiths and agricultural implement makers, to rails with 0.7 to 0.8 carbon; the latter being required by the Chemin de Fer du Midi, which is one of the few foreign companies that still adheres to the double headed chair rail, and with it a steel spring key instead of the ordinary wooden one. The manufacture of these keys was seen by the party. They are made of strips o 0.4 per cent. carbon steel weighing one kilogramme which are bent by special hydraulic machinery into a flat ring of the same form as the wooden key, each one being tested by a standard length of rail and chair before it is sent away. Tire-making by the Petin Gaude method was also seen. In this the ingots are cast nearly spherical, in order that any blow-holes may be localised
on a point at the top of the mould. These are flattened on a point at the top of the mould. These are flattened
to cheeses under an 8 -ton hammer, opened out by two to cheeses under an 8-ton hammer, opened out by two
blows of a conical point on the top of one of 15 tons, which gives a double conical aperture, by which any
unsoundness of the surface is driven into the inside unsoundness of the surface is driven into the inside,
where it subsequently disappears when rolled in the tire mills. The substitute for Swedish iron previously alluded o is a dead, soft material, containing only 0.08 per cent. o $0 \cdot 10$ per cent. of carbon, and proportionately as small mount of manganese and silicon. It is made in the open-hearth furnaces from pure hematite pig upon a
basic lining, a small quantity of lime being used in addition ore for softening. Other specialities of more genera interest made at these works are alloys for special steels, such as ferro-chromium and ferro-tungsten. The former is regularly produced with from 65 per cent. to
67 per cent. of chromium, and the latter with 50 per cent. 67 per cent. of chromium, and the latter with 50 per cent.
of tungsten, scheelite or calcium tungstate from Greece being used as a source of tungsten. This visit, which was well attended, was in every way a most agreeable ne, as although M. de Montgolfier, the managing director of the company, who had intended to be present, was kept away by an unforeseen business necessity, M.
Magnin, the director, and M. de Tang, the sub. director, of the works, spared no pains in the sub mation and explanation upon all points when such infor mation was desired.
On the return of the party from St. Jean de Luz it was found that the weather no longer gave any promise of allowing the ship to stay till the following day, so that when the last of the passengers had embarked prehe bay at 730 parture were made, and the Ormuz le sea disturbance the next day, which, however, did not prevent her arrival at the Nore in forty-eight hours. The and about an hour later the why $9.50 \mathrm{a} . \mathrm{m}$. on Saturday ing with them the recollections of an extremely successful and pleasant meeting.

The Imperial Tramways Co., which owns the Middles brough tramways, is proposing to make such alterations as wil
admit of their being worked by electricity. At Hartlepool tram way traction by electricity has already been adopted, and is work

LETTERS TO THE EDITOR.

A physical mathematical puzzle, Sif,- Will "Paste Pot" kindly let me know--privately if he
prefers it who told him of the puzzele described in his letter of
the 31st ult.? Ido not claim to be the inviter of the triek oddly enough I have, daring the last thirty years, shown it to
many persons at home and abroad, and it was novel to them all. After the manner of apprentices 1 once laced up a driving belt
with a half twist in in it and, seeing that both sides were thus
brought into contact with the pulley faces it upon me, I suppose, that such a buelt had only one edge and only one surface-a peculiarity not noticed by your correspondent ; and
no ono that I know of has turned this to account, exxeppt Beau-
champ Tower, who, soon after he heard of the half-twist bands, constructed a 32 ft , slide rule within an 8 ftt . box ? I cannot remem-
ber who suggested to me, if anyone ever did, the cutting of these 1 read of them in some French book as old as the hills. But,
returning to "Paste Pot." Had he persevered with the halfreturning to "Caste Pot. Had he persevered with the half-
twist ring which became "doble the size and half the width," he
would, on halving the width again, have obtained something more would, on halving the width again, have obtained something more
comical than what the whole--wwist ring gave him ; and it requires plenty of time and a very clear head to solve mentally the ring
problem in its more complicated forms. Take several strips of th following widths, lin., 1 lin., and 2 in.; ; make some of each into
rings, baving a half-twist, a whole twist, a twist and a-half, a rouble twist, and so on; then imagine the result of cutting the rings so as to make other rings only. दin. wide - that is, a half, a
third or a quarter of the original widts ; and try to think what
would happen if the rings could be splith instead of cut; and finally Twyford, Berkshire, September 23rd.
for the benefit of the artisan.
Sis, -In your issue of the 18th, a letter appeared, entitled "For that trade unions, instead of being useful to the working man, are absolutely the very opposite ; he is, in fact, tatanding in his own
light by joining one. The first part of his lotter is devoted to an
inquiry into the financial position of trade societies. Let us see what he says. If ets into arrears with his contribution he becomes out of benefit. Quite eo. But the same can be saido of he any socometes,
whether trade or a friendly society pare and simple; and insurance companies are even more keen, as your correspondent admits, so in that respect tontributions he will be called upon to pay, I say he tatat but a few pence. An occasion might arise when it in a l little
difficult to meet the contributions, and it would appear rather difficult to meet the contributions, and it would appear rather
hard lines for one to lose the money that had been paid in for years hard lines for one to lose the money that had been paid in for years,
perhaps; but, I ask, is he hessening his dififuculties by failing to do
so? He is increasing rather than decreasing them, friendly society is very often his only support in times of trouble. subscription, as he will find on referring to a prospectus of any
insurance company. The beneitis offere by a good trade society will compare favourably with any friendly society or insurance
company in this country, and the subscriptions as well company in this country, and the subscriptions as wel. Than
regard to superannuation, the trades unions have the advantage, - for supposing a man joins at twenty and is superannuated at fitty
five, he has paid in a sum of about $£ 180$, and leaving out of consideration that he may have received sick or out-of-work pay in
the interim, where is the insurance company that will pay a weekly the interim, where is the insurance company that will pay a week
sum of 9s, per week during the remainder of one' life for the
above $£ 180$? As to an artisan buying shares in engineering con cerns or building housos, it is too ridiculous to entertain. spent. on men who live on the society. It is obvious that an organisation of any kind must be administered, and in ecnsequence
a certrin amount of expense is incurred. But those whosed duty it
is to so is to so administer do real work, and must be paid in the same way
that any other workman expects to be. There are about 80,000 members in the Amalgamated Engineers, and out of that number
only twenty obtain their living by doing the society's work, so only twenty obtain their living by doing the
there wannot be much to grumble at on that head.
ond
says that the Amalgamated Society was not originally a fightin says the policy of the socioty to-day and that of fifty years ago
body. Th,
is, of course, different; but that is due partly to the employer therselves, and partly to the fact that politicial and socieal thouphrgt
has undergone a great change during that time. What satisiod has undergone a great change during that time. What satistiod
men years ago does not gatisfy them to-day, and it it this
feeling of dissatisfaction amongst the working Teeling of dissatisfaction amongst the working class of this country
that has placed it in the van of civilisation, progress, and reform. That the original members of the society were picked workmen
do not wish todeny, but I do deny the statement that no regard is taken of the abilities of candidates to-day, because every young
man proposed is, or gives promise of becoming, an efficient work man. Froptisans of of to-day promise of becoming not be as efficient woork
they were years ano but they
nound men ployer from the fact that they have quecome specialists, as it were in one particular branch of trade, and as such have greater wage.
earning power. There is a higher class of engineering work bein earning power. There is a bigher class of engineering work being
turned oot of this country than ever there was before, and it is being done, not by the old-fashioned mechanic, but by the more
modern one - the one in fact, that is looked down upon by men who learnt their trade forty years ago
Whether there are better men out of the society than in is a
隹 question I cannot answer ; but this I do know, that most of the
good jobs in engineering workshops in our town are all held by society men.
Many men
Many men have left the society, it is true ; but it is only fair to
say that large numbers of them have sought re-admission. They, at any rate, have not found contentment, nor do they think their weekly contribution badly invested. Moreover, there are large numbers of elderly men continually joining-men who have never
been members of any trade union ; these also see the error they have made, and at the last hour, so to speak, endeavour to rectify
hat it. There may be a certain amount of imposition on the society
but it is not confined to trades unions an it abounds through out the whole of society; so far, however, as the Amalgamated
Society is concerned, I can truthfully say it is reduced to minimum.
remaining outside a temonstrates his gullibility of intellect by through his nose, is he not the non--anionist ? There is nothing t any servitude, but they-the unions-are the natural outcome o
independence and manly spirit which has alway characterised
Englishmen. If we look at those branches of labour that are not organised, or at those couthes brane thabour that are not organised, or at those countries where trade unions are practically
onknown, what conditions do we find ? Why low wages, long injastices too numerous to mention. Can we not legitimately infer
rom this workman of to-day is infinitely better oft than his prototype of
fifty years ago; the wages are higher, the hours shorter, and the conditions under which he labours better, and in every respect his
ot is by far a happier one. This, in my humble opinion, is due Wirectly to trade unions, and is it not a sumbleicient return for
weokly investment of eightoenpenee? A "Non-unionist Erector
nay not think so, but it is evident to-day that the majority of

omployers for some concession, well, the Amalgamated Society
doese not do so, and in evidence of this, let "Erector" refer to th ecent circular addressed to the employers in the Manchester dis trict for an advance in wages; where is the threatening adtmidted
there? On the contrary, it was courteous to a degree, as admitted hy the employers themselves in their reply, I quite agree that a
strike is a most unsatisfactory way of settling disputes, but at Can "A Non-unionist Fitter" suggest anything else, and wha are the peaceable means to which he allades.
solved the great labour problem, let him give us the solution, and he will be hailed as one of mankind's greatest benefactors, Em ployers are to blame for the modern trade unions, and not the men
they resort to them in self defence. Who then can blame them?
Gorton, Manchester, September 22nd.
A UNIosis?.
large coupled wherls.
Sir, -M. Camille Barbey-page 263-says I have made "a
slight mistake" in writing that the new North-Eastern engine slight mistake" in writing that the new North.Eantern engines
are "the first successful ones with so large a diameter of coupled
 coupled wheels 2300 mm . in diameter, but the dimensions given
by M . Barbey himself show that their wheels were 7 mm . smaller than those of the new North-Eastern engines, and, if they were
"successful," why have 42 of their number been altered as he admits Sy "having been reduced afterwards to 2100 mm . $=7 \mathrm{ft}$ th.

LAUNCHES AND TRIAL TRIPS.
The Gaika, the second of the three new steamers being built for the Union Steamship Company, by Messrs. Harland and Wolff, of
Belfast, for the South African Trade, was launched on the e2nd is of over 6000 tons gross measurement, and will be propelled by of this class, the Goorkha, will beop of similar dimensions.
On the 2 rdd inst. Messrs. huncted a steel screw steamer of the follow, dimensions, Length between perpendiculars, 300 ft . i breadth, 43 ft .; moulded
depth, 19 ft . 8 in., which they have built for Messrs. James A. Wood and Co., of West Hartlepool. The steamer is built on the part awning decked rule, with poop and raised quarter-deck, her dead and cabins for captain and officers are fitted in the poop, the onginers' accommodation being amidships. She is buit on the web-frame principle, leaving the holds entirely clear for cargo, and
carries her water ballast in a cellular bottom and in the after peak. All labour-saving appliances are fitted for the economical working of the steamer, and also for the expeditious loading and unloading
of cargoes. She has steam steering gear amidships and screw of cargoes. She has steam steering gear amidships and screw gear
aft, four powerful steam winches, two large donkey boilers, direct team windlass, stockless anchors, \&c. The engines will work up
 Richardson and Sons, having cylinders 21 lin,
steam being supplied by two large steel boiiers working at at 160 lib.
pressure. As the steamer moved away the name of Suningdale was given to her by Mrs. T. N. Alexander, of Harbour View,
South Shields. day the 26th inst., the steamer Tadorna, which has
by Messrs. Wighan, Richardoon, and Co. .or the Cork Steamship Company, of Cork, went for a very successful trial trip
off the Tyne. The vessel is built of steel, being 255ft. in length
by 33ift. beam, rigged as a two.masted schooner by 33ift. beam, rigged as a two-masted schooner. She has very
comfortably fitted accommodation for a limited number of passengers, and has complete arrangements for working the cargo, and boilers have also been constructed by Mesrs. Wigham, slightest hitch, giving satisfaction to all concerned and driving the vessel at a speed of about $12 \frac{1}{2}$ knots. The trial trip was attended oy Mr. F. C. Kelson, of Liverpool, the superintendent engineer
of the Company, and Captain Hore, their commodore captain, as
well as by Castain Booth, who will take command of the vessel well as by Captain Booth, who will take command of the vessel,
and Mr. J. Denham Christie, of the builders' firm was also

THE NEWPORT HARBOUR COMMISSIONERS' WEEKLY TRADE REPORT.
Fair attendance on 'Change. Shipments of steam coal for the waather a very good demand may be expected. Prices moderate change. The demand for house coal continues good, but the
veather has interfered with arrivals of shipping. Pricesare firmer. Tin-plates in only moderate demand. The iron and steel works are all fully employed. Iron ore advancing in price.
Coal: Best steam, 8s. 3d. to 8s. 6d.; seconds, 7 s . 9d. to 8 ss ,

 siemens tin-plate bars, best,
cash. Tin-plates: Bessemer steel. coke, 9s. 9d.; Siemens, coke
nish. 11s. Pitwood: 15s. 3 d . London Exchange telegram: Copper,
E47 15s.; Straits tin, 256 18s. 9 d . Freights have a strong upward

AMERICAN NOTES.

(From our oron Correspondent.)

Nsw YoRk, September 23rd.
ALL developments point to an increase of pir irion stocks in
Vovember and December. Reports in the trade papers also point that way. Brokers and buyers do not think mattors can go on in dangerously light. Of course, winter is coming, and this forbids ho undertaking of important work and enterprises in a large nnd probabilities on this side of the water, that we have been
iving on scraps after our company, in the shape of prosperity, left us. Everything has been virtually at a standstill for three years,
except the equipment of industrial capacity. Deppite temporary discouragement, enterprise has been busy in putting shop, factory,
nd mill capacity of all kinds in better shape, and we find ourselves now on the eve of vital changes in our economic methods, with a capacity for cheap and enormous production never before
equalled. We have been whetting our scythes while waiting for equalled. We have been whetting our scythes while waiting for
the grain to get high enough. The temper of the American people

THE IRON, COAL, AND GENERAL TRADE
OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

Ov the 28th ult. a meeting of the sub-committee of the Midland Iron and Steel Wages Board was held at Dutley for the purpose
of receiving the acountants certificate. Sir Benjamin Hingley presided. The certificate was to the effect that the average selling
 The average seling price for May and June was $£ 5$ 13s. 8d.; for
March and April, $£ 5$ 15s. 4. 84 ..; for January and February,
f5 $£ 516 \mathrm{~s} .8 .02 \mathrm{~d}$; for November and Deeember last year,
$\neq 515 \mathrm{~s}$. 3.08 d . and for July and August, $1895,2510 \mathrm{~s}$. 3 d . Thus
there is an advance of 1 s . 9 d . on the previous two months' average,
 period of last year. This is considered very gratifying, thongh it
ooes not alter the rate of wages, which will remain at 7 s . 3 d . per on for puddlers, and millmen's wages in proportion, from October Considerable interest was
-atternoon in the agitation of the iron workers in the Westay Scotland for an advance of wages and for the formation of a wages
board for Scotland, instead of continuing to have wages regulated by the English sliding scale. Iron and steel masters here, who only too pleased to se be only too pleased to see wages advanced over the border, asd , so
course, the ffect would be to increase ironmasters' costs, and so perhaps lessen the present competition. It is the North of England rbitration atoard, not that in the to ironmasters in this district te demand of the men for a separate board seems entirely Making allowance for the suspended animation which generally
haracterises the market at the close of the quarter, the state of trade is sound and promising.
All the mills and furnaces are making full time at the completion of orders for the quarter.
In finished iron, marked bars are $£ 7$ to $£ 712 \mathrm{~s}$. 6 d . ; merchant
mat

Steel is a large output, and sale is brisk at $£ 45 \mathrm{~s}$. to $£ 4.7 \mathrm{~s}$. 6 d .
or Bessemer blooms and billets ; $£ 5$ for Siemens best billets ; $£ 410$ s. to $£ 412 \mathrm{~s}$. 6 d . for ordinary billets. Steel bars are $£ 6$, Pig iron is in ingood sand girders $£ 512 \mathrm{~s}$. 6 d .
s. to 42 s .6 d ., and cinder pig 36 s . 6 d . Northampton forge is Lincolnshire 45s. Lincolnshire 45s.
The export business of the general metal trades of Birmingham
eeps good. Australia and New marked recovery of trade recently in those colonies, and especially New South Wales and Westralia. There is also rather more doing
in Southern Australia, where the fruit and wine trades are rapidly xpanding. The shortness of the wool clip in the older colonies is not for the moment there is little to complain of, except, perhaps,
but regard to galvanised roofing orders.
Galvanised sheets of an inferior kind have been in rathe active request of late for various parts of South Africa, but a good
many of the orders have fallen to German makers. On better class many of the orders have fallen to German makers. On better clas
sheets, as well as rooong and bridge work, English makers con-
tinue to hold their own in South Africa, as well as in India and Some of the South American markets, and especially Argentina,
Chili, and Colombia, are sending in good indents just now for general netal wares.
The prospects of the welded steel tube trade continue wonderBirningham, to whose declaration of of the star per cent. divididend
referred last week, the chairman said "that the tube mill had orked night and day from the time the company w nong timere was every chance of it continuing the do so for a very
loner financial year was still very young, they
had already booked considerably more orders than the tol號 prices. They hoped, therefore, that with an increased turnover advanced prices, and the cheaper means of producsion which toey
were continually finding out, the results of the ensuing year would be almost as satisfactory, as the past. They knew that many
companies had been started in the tube trade. Some of the would never make a good tube if tube at all. Many had bee
 any shape or form. The three tube companies which were workompetition wions wo metter what the biow waider the come to, there ms plenty of scope for the welded and they were daily finding new uses for it. It was astonishing what large inquiries they, got for tubes for engineering, marine and many other purposes." It was claimed by subsequent speakers
that last year's success was without a parallel in the history of the city of Birmingham.
A dividend of 20 A machine, which should be of great use to carriage builders which a first public demonstration was given this week at 76 , Brad ford-street, Birmingham. It is intended to give an alternative to the usual shrinking-on process. In the fixing of the tire no heat is required. The tire, instead or being made under size, is made so
that it will just remain in position on the wheel. The wheel is then fixed on a steel table, and pressure being simultaneously applied every point of the periphery, the tire is compressed until it takes a firm hold. The compression of the tire is effected by a number of segmontal pieces, which can be changed to get the right curve
for varying circumferences. These segments, of which there were eighteen in the machine exhihited, rest upon sliding sections, each
of which fixed pist moved radially inwards by an hydraulic cylinder, th which takes the strain when the machine is at work. With a 4.horse power engine and a triple-plunger pump, each of the seg.
ments can be made to exert. a pressure inwards of fifty tonstotal for the circumference of 900 tons.
A resolution was proposed at the last meeting of the Walsall
Chamber of Commerce to the effect that a light railway or tram way along the Birmingham-road, from Walsall to Perry Bar, is
undesirable, But onther undesirable. But other speakers favoured the idea, and the reso should be speakers said thened for further consideration. One of the property along the route would be improved in value

NOTES FROM LANCASHIRE.

(From our oon Correspondents.)

ments so fully engaged for some time forward, that they are alto-
gether unable to entertain further orders that might be secured, sether unable to entertain further orders that might be secured Itmply because they cannot undertake anything like early delivery.
under such conditions out that a strike in the engineering trades under such conditions as the above, would be most disastrous, and
the men are apparently taking advantage of their position for en
forcing their demand by a resort to extreme measures as forcing their demand by a resort to extreme measures, as they have
altogether ignored the employers' suggestion that deputation
should be appointed on either side to discuss the whole matter with a view to a friendly settlemen
Business generally on
and although there was a fair average attendance at Tuesday's pig iron local users are mostly well covered, or just for the presen ongineering trades, and transactions for the most part are limited to comparatively small quantities. Makers do not give way, as
they are generally well sold, and comparatively independent about
further immediate business; hut merchants are low sellers, and in the open market prices are being cut up by cheap second-hand
parcels, chielly of Scotch iron, which since the excessively low
sales referred to Local and district makers, although not booking many ne me orders just at present, are, on the small sales put through
getting their ful rates, which, remain at 46 d . 6 d ., less $2 \frac{1}{2}$ fo
Lancashire ; 43 s . net cash for Lincolnshire ; and 45 s . 6 d . to 47s. net cash for Derbyshire foundry qualities, delivered Man
chester, with forge numbers averaging 44s, less 21 for Lancashire
and 42 s . 8d, net cash for Lincolnshire, delivered Warrington. In outside brands Middlesbrough also continues very firm, makers of asking 46 s .7 d . to 46s. 10 d . net cash for good foundry brand
delivered by rail Manchester, with 44 s . net, the quotation delivere
Ship Canal. Scotch iron, however, is obtainable at monsiderabl Ship Canal. Scotch iron, however, is obtainable at considerably
under makers' quotations; odd parcels of Glengarnock have been offered, delivered Ship Canal, Manchester, at 47 s . $10 \frac{1}{2} \mathrm{~d}$., and can
be bought delivered Lancashire ports at 45 s . $10 \frac{1}{2} \mathrm{~d}$. ; whilst 46 s . net prompt cash, delivered ports, represents an average figure at
which orders could readily be placed, both for Eglington and
Glengarnock in Glongarnock in the open market.
A fair demand still comes
iron trade, with prices strong. Lancashire bars are hardening to
$£ 512 \mathrm{~s}, 6 \mathrm{~d}$. on inland sales, which they can be bought, with shipping prices firm at at inimum $£ 512 \mathrm{~s} .6 \mathrm{~d}$ f.o.b. Liverpool. North Staffordshire bars still average $£ 512 \mathrm{~s}$. 6d.
to $£ 515 \mathrm{~s}$.; sheets are steady at $£ 75 \mathrm{~s}$, to $£ 710 \mathrm{~s}$. ; and on hoops, although only a slack business is reported, there is no change in at $£ 62 \mathrm{~s}, 6 \mathrm{~d}$. for random to $£ 67 \mathrm{~s}$. 6d. for special cut lengths, wit
2 s .6 d . less for shipment. 2s. Nut and bolt makers
some cases, advanced their list rates $£ 1$ per ton.
In the wire-netting trade In the wire-netting trade, which for the past eight or nine
months has been exceedingly busy, instead of the falling off which
is usual at this time of the year, increasing is usual at this time of the year, increasing activity, if anything is an unusual demand, and the shipping business is so exceptionally this year, large quantities being exported to the colonies, especially
Australia. This large demand for netting has necessarily caused correspondingly
move in prices.
The position as regards the steel trade is without material change
Good foundry hematites are still quoted 57 s . to 57 s . 6d., less 21
but merchants would sell at under these figures in the

 in this diotsirftat at about 6 ths. per ton.
The wages question in the eigineering trades of this immediate it was thought that aftor the employers had practically thrown
out tho suggestion that deputa
dither

 EEvazax= $5=-2=5$ Eva= $=$ $=5=x=-2=$
 $=5=$
 $= \pm=\mathrm{w}=\mathrm{z}$ $=5=2=2=2$ $5=5=5=$ $=\mathrm{F}=\mathrm{E}=\mathrm{E}=$ $=\mathrm{v}=\mathrm{E}=\mathrm{z}=$
 $\mathscr{V E V E}=\mathrm{E}$ $x=5=5$ $=5=2$ $\mathrm{T}_{2}=\mathrm{F}=\mathrm{z}=$ F= = wisw上wav==
 $=5=2=$

The Portable Building and Construction Co. has opened an
extensive new works in Manchester, where it will in future manufacture the whole of its specialities in portable buildings,

The
mor
cien
ting

r
r
e
q

and forge coals not averaging more than 5 s . 6d. to 6s. per ton, at the pit mouth. Engine classes of fuel are more plentiful, but any large surplus of supplies is chiefly in the inferior qualities, the
better sorts still, in most cases, moving off readily, and fetching
from 4s. 3d. to 4s. 9d.; common slack, however, is offered very rom 4 s .3 d . to 4 s .9 d .; common slack, however, is offered very
low, and inferior sorts are obtainable at 2 s .9 d . to 3 s ., with medium qua regards the weight of business coming forward, but none whatever in prices, which continue very low, 6s. 9 d . to 7 s . being the full
average figures for ordinary steam coal, delivered Mersey ports, or Manchester Ship Canal.
steady, and prospects continue pig iron trade business keeps very active winter assumed, but the forecast for next year indicates a continuance of briskness and activity. Consumers are asking for
full deliveries, and speculators and merchants are good buyers. Prices are exceedingly steady, and makers are still quoting 48s. to
49 s . 6d. for mixed Bessemer numbers, net f.o.b.; while warrant iron is quoted at 47s. 21 d . net cash sellers, 47 s . 2d. buyers. The doing in forge and foundry iron. There are thirty-six furnaces in blast, as compared with thirty in the corresponding week of last
year. Stocks show a decline on the week of 925 tons, being an increase since the beginning of the year of 12,888 tons. The stocks in hand now represent 302,063 tons.
there is a bigger demand than supply, so that the trade doing in Spanish ores remains steady and full, prices for the latter ranging from 12 s , to 12 s . 6 d . net at West Coast ports. Native ores are at
10 s . for ordinary qualities, although some sales are noted at slightly lower prices, and 12 s . to 14 s . 6d. for best descriptions. A very steady demand is noted for steel of atl the descriptions
manufactured in this district, but the most notable demand is for heavy steel rails, which are in large inquiry on home, continental, and general foreign account, and prospects point to a continuance
of activity in this branch of the steel trade, as the consignments of activity in this branch of the steel trade, as the consignments required by users are on a large scale, and important railway
extensions are in progress throughout the world. Now-a-days, colonial trades with the Continent and even with America.
Local makers, however, can maintain combination rates at
$£ 412 \mathrm{~s}$. 6 d . to $£ 415 \mathrm{~s}$. per ton, net, f.o.b., for heavy rails, as they are so well sold forward, and see such good prospects of a continuance of good orders. More is being done in steel shipbuilding
material, and the requirements of shipbuilders and engineers seem to be on the increase. The heavy plate mills are especially busy,
and a good demand is still maintained for heavy steel castings. Hoops and billets are not in as brisk a demand as they were son
time ago, but makers are busy and likely to be for some time. and are busy tendering for some good orders, as well for the
Admiralty as for commercial owners. The engineering trade is Admiralty as for commercial owners. The engineering trade is
fairly well employed at present, but new work is required to keep up the present activi of col is on aratively large scale, prices are very low, and competing colliery proprietors com-
piain of the difficulty they have in securing a profit out of the sales they make. The coke trade is steady, and the chief supplies
still come from Durham, but the Burnley coke owners are getting fuller output than of late, and large supplies are coming to the
Barrow works from this source. Prices of coke are firm. Barrow works from this source. Prices of coke are firm.
Shipping is steadily employed. During last week 5866 tons of
pig iron and 8781 tons of steel were shipped from West Coast ports, as compared with 6999 tons of pig iron and 4492 tons of
steel in the corresponding week of last year, being a decrease of
133 tons of pig iron, and an increase of 4289 tons of steel. The 1133 tons of pig iron, and an increase of 4289 tons of steel. The
shipments this year to date total up to 240,160 tons of pig iron,
and 366,150 tons of steel, as compared with 223,699 tons of pig
iron and 282,443 tons of steel in the corresponding period of last 1

THE SHEFFIELD DISTRICT.

ABoor an average time is being worked in the South Yorkshire

 the pubio for asistance, and these are usallly generously
met in the immediate neighbourhood of the colieries where the
vill
 coal war of 1893 are not quite so ready to spond money to keep
the ocliers unemploged as they were at that time. In the bouse hold sorts the cold, wot weather has caused a slight betterment id
demand, but thero is is less doing with London than the trade
ntion anticipated, there being litile byying formadra, whilo merchants
show roluctance to stock supplies with a view to an augmented

 very large tonnago is learing the district, with a perceptibl
lossening of the stocks which had accumulated two months ago
Hult

maintaining their aotire call, values ranging from 84, 6 d . to 10 s ,
por ton. Some qualitites make as much as 122 s . per ton. Fresh orders are expected from the Government for armour plates to take the place of those now being rapidly worked out,
and are still being waited for, and, so far as can be ascertained
there is no immediate prospect of their being received there is no immediate prospect of their being received. In rail
way material, on the other hand, although no large orders have been placed
rolling stock. Several of the English railway companies have lately decided to make large expenditure on their systems. Thi
decision was inevitable, as for several years many of the companies have been deferring the more periect equipment of their lines in confidence. That turn has now come and advantage is now bein taken of it thoroughly to equip the leading English lines, as wel as those in Scotland with which they are connected. marine work;
Some disappointment is expressed with regard to
but there but there are evidences of improvement in this respect. Freights
have gone up considerably, and it is hoped that this change for the have gone up considerably, and it is hoped that this change for the
better will be permanent, although in one or two quarters the opinion is expressed that the improvement is due to an unusual ing at a somewhat earlier period of the season than usual, has brought about a sudden demand for vessels, thus sending freights
up. The fear is, that when the present demand is satisfied freights will again relapse ; but the principal local houses
the improvement will be
An important step has just been taken by the Government in regard to files. In tenders previously sent out by the State, it was
stipulated that "the whole of the files and rasps should be made of the best refined cast steel, hand cut and sand blasted." It is
now evident that these conditions have been modified. The local firms are at present tendering for one Governist depart time that the stipulation has been removed, and it has excited no little interest in the trade. Since the men received a concession of 10 per cent. in wages, the hand-cutting firms say they have been at a did not give their men 10 per cent. This has led to a more whe adoption of mair men and other macturers are certain to ao the same way. There are certain files that must be cut by hand and it has been declared that no machine yet invented has been
able to turn out the quality. For the range of files and rasps most largely used, however, the machines now in operation are well able to manufacture all that is required. This trade
men are certain of full work during the winter.
The disturbances in Constantinople are having a disastrous are the commercial link between the producer and the consumer and without them commerce is impossible. Several of ou nople, from which they also do a large Levant and general Asiatio trade. That has been entirely stopped during the recent deplorthe political clouds clear off and the principal business men return to their ordinary avocations. On the other hand, the successful expedition to the Soudan is regarded with great hopefulness a restoring that vast region once more to cillisation and com onerce. up through Egypt with these regions, and now it is expected that commerce will speedily follow on the heels of the Egyptian advance under efficient British control.
of Wharncliffe as president, with Mr. C. H. Bingpointed the Earl appointed to carry on the work of the league under the is to be appointed to carr
of the committee.

THE NORTH OF ENGLAND.

(From our onon Correspondent.)
In almost all respects trade in this district continues to show progress, and especialy is this so in the little. But there is now a good
which have hitherto moved very lion
demand, as consumers are anxious to secure supplies without delay, for they are satisfied that prices must be higher, if only to dearer. Most manufacturers have this week put up their quotations for finished iron 2 s . 6 d . per ton, and are able to realise the advanced rates. Some of the bar makers have never had a busier time, and they are in the unusual position of being able to refuse
orders, owing to their inability to execute them within the
time stipulated. Some have contracts booked which will keep them fully employed over the rest of the year, and for common
iron bars they quote $£ 52 \mathrm{~s}$. 6 d , and best bars $£ 512 \mathrm{~s}$. 6d., both
less 21 per cent iron
less
the and the fuller employment for steamers are bringing in more
orders orders for new vessels to the shipbuilders. Some idea of the im-
provement in shipping is afforded by the fact that whereas on the
Tyne there were nineteen vessels laid wp at the beginning of tember there are now only ten, a smaller number than has been reported for over two years, and with the rapid advances of
freights, there is a good chance of substantial profits being realised. Steel ship plates have been put up to $£ 52 \mathrm{~s}$. 6d.; iron ship plates
to $£ 5$; steel ship angles to $£ 5$; and iron ship plates to $£ 417$ s. 6 d all less $2 \frac{1}{2}$ per cent., and f.o.t. In the steel trade the almost
all
certain increase in cost of production is as areat a factor as any. certain increase in cost of production is as great a factor as any-
thing in raising of selling prices, Ore freights have risen substantially, causing the price of ore itself to advance, and though as that must follow, as must also some further rise in the value on anticipating the advance, especially as they are so well supplied with orders now. The rail trade continues very active, and the
price of heavy steel rails is steady at $£ 410$ s. net at works. Iron founders have advanced their prices for railway material, and ask
$£ 310 \mathrm{~s}$. for cast iron bowl chairs, and $£ 3$ for ordinary cast iron Though makers have not sold a great deal of pig iron this
week, they are delivering an unprecedentedly large tonnage, and have some difficulty in satisfying the needs of consumers at home the trade has there been such a heavy production of pig iron, and never
that the present output, large though it is, is not equal to the
existing requirements, and stocks have to be drawn upon very freely. The official returns have not yet been issued for September,
but it is estimated that the consumption of Cleveland pig iron will have exceeded the production by 25,000 or even 30,000 tons, and
there are makers who are sanguine enough to predict a still greater decrease of stock. Such a decrease as even the lowest of the
figures named above is remarkable, when it is considered that it There can be no question of the activity of the pig iron trade in
the North of England, more particularly if the shipments also be taken into account, and it is surprising that better prices than now
rule are not realised. The exports of pig iron from the Cleveland
district in August exceeded the previous best by nearly district in August exceeded the previous best by nearly 10,000 tons
but those of September have been 14,681 tons better than those of

 whereas this year, in six months out of the nine, that quantity has
been exceeded, and in several cases largely exceeded. The decrease
$=4$

 merchants are in no hurry to quob
tondency is still markedly pupwards.

 which 9hd. only has been gained this year. The average price
was in July-August 7.63 d . per ton better than in the previous twe

 last year the manufacture was alling off at a great rate, and only
78,48 , 4 tons
vearo year; but this year the ouantity for the oor responding period has
 seen by the following summary drawn up by Mr. Watarhouso of
the deliveries during the two months onding Augus 30 hy hy frms tho deiveries during the two months on
connected with the Conciliation Board.

Wages at the Northera mills and forges, which are regulated by

 has takeon out the price for the last three months, and the secre
taries of the Board announce that
no change will bo made in wages during the three months ending December 31st next.
Other steel works in the North of England base their wages on the Consett fluctuations. Sir Michael Hicks-Beach, the Chancellor of the Exchequer, is to
visit the Tees on the 14th at the invitation of the Tees Conservancy
Commissioners, who will show him the improvements they have Commissioners, who
The coal trade is somewhat busier than it was, but the steam time of the year, and some of the Northumberland collieries are working rather badly, while 8 s. per ton, f.o.b., has to be taken for
best best qualities. Gas and bunker coals are in fair request, and
coking coal pits are fully employed. At the Murton Colliery, belonging to the South Hetton Coal Company, the East pit has
been flooded through the breakage of one of the metal plates, fft.
by 3 ft , and 6 in . thick, with which the shaft is stopped work at two other pits, and 2000 men and boys were idle in consed work at two other pits, and 2000 mowever, another plate having been fixed, work
has been resumed at the other two pits, but it will be some week has been resumed at the other two pits, but it will be some weeks
before the East pit is cleared of water. The Haswell Colliery, like the Rain

NOTES FROM SCOTLAND
(From our oun Correxpondent.)
The Glasgow pig iron market was closed on Monday in con-
sequence of a local holiday. At the opening on Tuesday a fairly good tone provailed, and since that time
whole, been steady, fluctuations in prices
tendency is firmer for pig iron warrant
business, but the favourable state of the manufacturing branches has put additional strength into the business this week. Scotch arrants have been done at 46s. $2 \frac{1}{2} \mathrm{~d}$, and 46 s . 3 d , cash, and 46s. 5d. one month. Cleveland iron has been firmer in con-
sequence of the large shipments from Middlesbrough, business taking place in this market at 388 s . 1d M, ahd 38. 38 s . 2d. .cash, and
38s. 4d. one month. More attention is given to hematite warrants in consequence of the advance in the prices of ore, and transactions
in Cumberland warrants have been 47 s . 1 d . to $47 \mathrm{~s}, 22 \mathrm{~d}$. cash, and
$47 \mathrm{~s}, 5 \mathrm{~d}$. one month. The market for S
taking good and constant sapplies. Govan, Monkland and Carn-
broe, Nos. 1 are quoted 47 ,
 48s. 6d.;
The foreign demand for Scotch pig iron shows no improvemen The total shipments in the poost pig week, coastwise and abroad, have
been 5955 tons, compared with 7595 in the same week of 189
There was despatched to Canada 100 tons, South America
India 20 , Austral land 910 , Belgium, 30 , China and Japan 660, other countries 218 ,
the coastwise shipments being 2070 , against 4781 in the correspond-
ing week of 1895 .
The output of pig iron is fully maintained, there being 78 fur-
naces in blast, compared with 76 at this time last year, and of the
total 43 are producing ordinary, 34 hematite, and one basic iron.
Twelve months ago there were 52 furnaces making ordinary pigs,
and the number is now reduced to 43 ; but, on the other hand,
there were only 19 furnaces producing hematite at this time last
year, while the number is now increased to 34.
in ore prices. From various quarters there has been in the last
week or two an increased demand for ore in anticipation of additional export charges coming into operation at Bilbao with the beginning of October. Simnltaneously with this oxtra onnage, so that freights have risen, and the general result is an
advance in Spanish ore, of which probably we have not yet seen advance in Spanish ore, of which probably we have not yet seen
the end. As noted above, the prices of Cumberland hematite
warrants have been rising, and in West Cumberland there
is an indication of higher prices being wanted. In the is an indication of higher prices being wanted. In the
West of Scotland, merchants still quote for Scotch made
hematite 49. 6d. per ton, delivered free on trucks at the xum xatusamumz wit

 rade, and are so still, although the demand for bridge work and other material has lately been growing in a very marked degree.
It only requires a rather better demand for ships to bring about a A moveret for hematite and steel. A movement of considerable importance affecting the finished
iron and steel trades is now taking place among the operatives in wasmationat avirimazavewaim 2nver

 $\cdots=$

 stance will no doubt give additional point and force to the agitation in the West of Scotland.
Owing mainly to stormy weather, the coal shipments at Scottish
ports have fallen off to a considerable extent in the past week, the clearances amounting to 152,414 tons, against 169,891 in the preceding week, and 165,865 in the corresponding week of last year.
In Fifeshire the demand has been quiet, and in Ayrshire there is no improvement since last week. The tone is a little more satisfactory in Glasgow market, where prices are inclining upwards.
During September twenty-two vessels were launched from the Clyde shipyards, aggregating 34,000 tons, compared with thirty
vessels and 35,000 tons in the same month of last year,

WALES AND ADJOINING COUNTIES. (From our ourn Correspondent.)
 avawaiaw wive
 Tanmanation

 5um

 $=$
上ive mix wivi Ystalyfera, Primrose, and Glyntawe; Grongola moderately brisk on foreign account, coastwise slack ; demand for semi-bituminous report on 'Change being to the effect that there was a good deal of flatness in the market, and little demand for prompt shipment. What
with dullness of trade, and the severity of the gales interfering with with duilness of trade, and the severity of the gales interfering with
shipping, the outlook for steam coal is at present glomy. House owing to the scarcity of tonnage, easier. Latest Cardiff price

Pitwood, Cardiff, sluggish prices, 14s. 6d, to 14s, 9d. Iron ore brisk, prices improving.
Tenders are being soicited for the Gower Iron and Tin-plate
Works, near Penclawdd, Glamorgan. The forge contains fifteen Wuddling and three balling furnaces, three stearg hammers, dc., \&c. The tin-plate mills is reported to be very complete, with a new. I regret to have to annomnce the death of Mr. E. Beddoe, of Llancaiach, colliery owner. He was associated with his late brother, Mr.
William Beddoe, in opening out a good area of the well-known Mynyddislwym coal.
The mechanics of Ebbw Vale Iron and Steel Works came out on Saturday, after giving only one week's notice. The men number
00 , and are affiliated with the Amalgamated Society of Engineers Their wages are 19 s . 5 d ., and in some cases 21 s , I understand they demand 25 s .
The iron and stee The iron and steel trades continue in a tolerably satisfactory
state, though so far without any change worth noting in price. As regards wages, the meeting a fow days worth of the Sliding Scale
Committee in the trade decided that the audit would not allow of any change. In the Swansea district most of the works are busy
the Landore tin-plate, Swansea blast furnaces, Milbrook steel and engineering works are all brisk. At Dowlais the whole of the
mills and furnaces are in active operation, and there is no fear of further stoppage. At Cyfarthfa there is a good deal of pig iron
in stock, and the make of steel rails has been brisk, though a large quantity is stocked for shipment. A novel consignment from these works, where the make of steel rails is a novelty, took place this week in the form of a larger quantity of rail ends for Cwmfran.
Large consignments are now in course of steel rails, tin bars, and Large consignments are now in course of steel rails, tin bars, and
small goods from Dowlais. On 'Change, Swansea, this week it was reported that there was a falling off of orders for rolling galfollows :-Pig iron, Glasgow warrants, 46s. 2d. cash buyers;
Middlesbrough, No. 3, 38s.; hematite, 45s. 3d.; Welsh bars,

 The tin-plate trade continues in a doubtful position, much
depending upon the action of the men this week. If notice be depending upon the action of the men this week. If notice be
given, and not withdrawn at the end of October, it means another
of the calamitous events which have so frequently occurred in this trade as leading makers say that the granting of 1874 prices is a sheer impossibility. The price of raw materials has gone up without a corresponding advance in price per box, and if many are
not working even now at a loss, they are making no profit. The block will only benefit one body, the Americans,
Briton Ferry mills and several in the Swansea district have been
busy. Last week the shipment of plates was 59,314 boxes, make ausy. Last week the shipment of plates was 59,314 boxes, mak shipping all along the coast, and Port Talbot works at North pier injured.

NOTES FROM GERMANY

THE accounts that come in from the various districts concerning the position of the iron and steel trades are all very favourable.
Inquiry is brisk, and a full employment is reported at the different A good, healthy business is transacted on the Silesian iron
market, and there are indications of a further stiffening in quota market, and there are indications of a further stiffening in quota
tions, demand having steadily improved during the last weeks.
All sorts of raw iron meet with a lively request, and for malleable iron numerous orders of considerable weight are constantly being
secured ; the confident tone of the market has consequently been well maintained. A specially satisfactory trade is done in plates
of all descriptions, the continually improving foreign demand now be considered infuenced the condition of prices, which may A fair amount of business has, in the course of the week, been sorts of structural iron remaining in particularly good call. The hardware trade also appears to b ditto, 48 to 51 fl ; Bessemer, 48 to 51 fl . ; ingots, 76 to 80 fl , ; bars naking purposes, 160 to 180 fl., according to quality ; tank plates,
30 to 135 fl ; girders, $111 \cdot 50$ to 125 fl., all per ton. Tin sheets, 6 fl. per box; galvanised sheets, 210 to 265 fll . p.t.
The French iron market has been very steady Pig iron sells briskly at fair prices, and for malleable iron there is shops are particularly active, and have very good prospects for further orders. Material changes in quotations cannot be reported; in a few instances slight advances have taken place.
On the Belgian iron market the tendering for
On the Belgian iron market the tendering for railway material
for the State Railways was the most interesting event of the week and it is worth mentioning that the works as a rule have been asking considerably higher prices; sectional iron No. 3, for instance,
which was offered at 144 f , to 146 f . p.t. last year, now fetching 68 f. p.t.; plates No. 3 realised 184f. to 200f., against 168f. p.t. he supply of the last-named article was granted to a French
works. Changes in the favourable condition of the different departments of the Belgian iron and steel trade are not likely to take place for some months to come. Exports have been rather recently. Latest quotations for home consumption are :-Girders in iron or steel, 125f. p.t.; bars No. 2, 137-50f. p.t.; plates in iron,
No. 2, 150f. p.t., the same in steel, 160 f. p.t. Ingots cost $97 \cdot 50$ f. p.t.;
blooms, 110f. p.t.; billets, 120 f. p.t.; scrap iron, 60 f. to 65 f. p.t. at works. Girders for export quote £. £5 scrap. p.t.
The principal feature of the Belgian coal market is a quiet firm-
ness, which will, most probably, change into briskness and an upward tendency, as the demand for house coal begins to increase. Up to date prices for common small coal are 6.75 ff . to 9 f. p.t.; best
small coal, 7 f . to $9 f$. p.t. House coal, best sorts, 12.75 f , to 15 f . p.t.; second quality, 9 f . pl.t.
Here and there sligh
takere place since laght advances in notations are reported to have taken place since last week, although, as a rule, list rates are firmly
maintained, but not surpassed. The total production of pig iron in Germany, including Luxemburg, is statistically stated to have been, during August of present year, $539,440 \mathrm{t}$., of which $135,903 \mathrm{t}$.
were forge pig and spiegeleisen, $46,166 \mathrm{t}$. Bessemer, $280,784 \mathrm{t}$.
basic, and $76,587 \mathrm{t}$. foundry pig. Output for July 1896 amounted

the patent journal.

 Condensed from "The Mlustratal Oflicial JournaiPakents."
Appllication for Letters Patent.
Application for Letters Patent.
When inventions have been communicated the
namo and addross of the communicating party are
printed in italics. namo and addross of
printed in italics.

6ih Spptember, 1896.
20,516. OnL Lasprs, E. Eaglos, E. Skelt, and A. G.
EEans, London,
20.5izd
 20, Londo. Apparatus for Puxchina Paper, G. M. Gibson,
London.

 17Ch Spptember, 1806.

 20,536. Avtionsatic Reverse Lock, D. James, Ponty${ }_{20}^{\text {pridd }} \mathbf{0} 5$, itisis. Crutores or Artifioul Limbs, J. Ronan,

 ham.
has.j. STovE RAkER, D. Gillios, Bonnybridge, Stirling
shiro. 20,5iro. SLat Distrisưor, T. C. Sargeant, Northamp-

 ${ }^{\text {Brighton. }}$ 20.4. Rixis and Psuvuatio Tries, P. M. Staunton,

 20, 570.0. Attachiva Dress Guards, J. Biddle, Birming
ham. 20,57.1. Whres.s of Crceles, B. J. Hammersley and C.
 20,5]. Puxpino or Raisisa Lievids, J. Keith,
 20.5.js. Neoktik or Scary Retaingrs, J. Parsons,
London. 0,576. Assistivo Learners to Ride the Bioxole, J. w. Dyer, London.
20,57r
worth, FRosrs
London. 20,578, Now-slippina Device, v. Barrett-Lennard,

 Autonationlly Closiso Gates, E. Holden, Horas Manure Reckitacle, e. Whitlock, 20,588. Transmittina Rotary Power, J. A. Drake,

 London.
20, Trise Prorvecror, H. L. McKellops and E. O.
Cochrane, London.
 20,503. SRogivo Horses, H. G. Hogg and E. Plows,
London. 20,544, Moroor CARs, J. P. ODonnell--(P. A. T. de B. 20, Bond DRace
London. London.
20, ojen .itiva Usinisished Garuestr, A. J. Hawes,
London.
 mingham.
20, 505 . Tmeatiesst of Caloive Carbide, J. A. Deuther,
London. 20,509. PRoD.
London.

${ }^{20,62}$

20,624. Sruvitues for Loons, dc., G. W. Crawshaw,
Go.620. Cla.

20,630. Gensina Device for Cycless, \&c., J. Jackson,
Coventry.

 634. Foldixa Scrien Cheval Glass, w. Hill
Hanchostor.
 20, 530.1 sock or PAD for Boors and Srozs, S. H. Jame
London.

 pevimatic Tires for Cveles, dc., J. Munn
 Won-on-Tees. 7. Colisam Machine for Metal Wire, t. Weit,

 lay, Polmont, N.B.
20, Leed. AT. AToMATIC BA
Leods.
L.654. Hopse Nosebno Suspesder, w. S. Dougall,
Nottingham.
,
 Birrmingham.
$20,650$. Booms
mingham.
\&c., C. Hickmann and G. Mellor, Bir-
 ninux, Brusele
20, biss sterve Extexders, T. W. and M. Marsters,
 20,660 lnam.
 ${ }^{20,6 \text { cester. Conk and Busa Littre, L. J. Powell, Pem- }}$ broke Dock.
 Bristol
20,664 Holders for Bel.
mingham.

 $\xrightarrow[\substack{20,006 \\ \text { Lo.,66 } \\ \text { Lon }}]{2}$

 London.
20,67. Mmakiriso Ladders for Suirs, H. K. and E. K.
Scott, Londin.
 London.
20.fic. Makina Colovaino Matteres, o. L. Witt,
London. 20,67. Consyectivo Braces to Garments, E. L. Evens

 20,681. Cobk Tirk with Stekl Coverina, G. G. Astley, London.
20,682. Mud Guards for Cycless, J. Fletcher, Birming.
ham. 33. Fastexgers for Weariso Apparkl, H. Kloinmann, London.
20,034. Poonshisi Silver WARE, H. M. Hollingworth,
Lond

 20,600. Clutches for Vabiable Sperd Devices, A. w.

 20
20,3
120
20

 London
Loont
Londint

Thomas and \mathbf{E} Pring Vegettable Substances, \mathbf{R}
20,715. Kiolis Flutering Apparatus, O. Schaller,
London.
London.
20,716. Improved Dryino Kiln, A. Muller, jun.,
London.
20,717. Dumosd PoLishino Machinss, A. J. Boult.-
(A. Wauters, United States.)
20,7i8. Wauters, United States.)
London.
20,719. Conneotina Tender Deors, de., N. Haxell,
20,784. Foot Warming Appliances, H. J. Thaddeus 20,784. Foot Warming Appliances, H. J. Thaddeus
London.
20,785. Manuracturina Peinters' Leads, F. Ullmer,
London. Manufacturina Pristerb Leads, f. Uimer,
Sionalino apparatus for Railways, L. B. Re of Real Laog Tulle Blonde M. y Llorca, London.
un Practice, W. J.'s. Barber-
ing apparates, T. Mofeleg,
 SHEF Dir Powder, W. O., T. O., O., and W.
Quibell, London. Pnibunatic Brake for Wheels, T. R. Mudie,
on
Manufacturino thorium Hydrate, B. Biccurse
Biccen. J. T. Cheetham and J. w. Waters, chester.
Elergic Railways, H. H. Lake.-(R. Lundell, Unitel States.) Inglis, Glasgow,
20,788, ConsTrucrion of Cycles, C. J. Fauvel, London.
20,799. Nalus for Boors, \&c., J. Radeliffe and F. E.
Baggaley, Manchester. Baggaley, Manchester.
0 Soo. Sremchroc Boot Uppers, J. S. Marshall and
J. Bowler, London. J. Bowler, London.
20,801. Raisino Doors on their Hinars, E. Edwards. - (C. Higgen, Germany.)
20, So2. Embroiderino Loom Lathe, J. C. Blanchard, London.
,803. Finishisg Boots, F, Butters, London.
,804. FUNEEL with AIB TUBE ATTACBMENT

London. 0,806 . Rotary Grindino Mills, J. Heinstein,

London.
Burt-up Sheets of Veneer, C. McCallum,
London.
, 8 . Weers with Elastic Tires, T. C. J. Thomas and E. C. Steavenson, London.
20,809. Pseveatic Tires, T. C. J. Thomas and E. C. Steavenson, London.
20, 10 . Detachabe Puncture-proof Psevmatic Tire, M. and B. Trigg, Kent.
20, Sil. Converason of Reolprocatina Mution, L. S.

20,014. Lompi, Haly.) for Weaving, J. Ward, Halifax.
20,815. Preventino Punctures in Pneumatic Tires, G. Roy, Manchester. chest. Reranina False Teeth in Position, H.
20,817. Racalay, Glasgow. 20,818. ManUfacrure of Magnesia, M. N. d'Andria, Stretford, Lancashirc.
0,819 . GEAR for Bicycles, J. H. Ross, Birming. 20,727. Sunshades, Parasols, \&c., J. W. Dcattio,
London.
20,728. Cloth Fabrics, w. H. Symington, London.
20,729 . Pat
 20,720
20,73
\mathbf{E}. $\operatorname{mingham.~}_{20,732 \text {. Decreasina Wool Cotron Waste, G. E. Wright }}$ Monk, Manchester.
URIFICATION of LIquid Sewage, J. B. Petrie, Purification of Liquid Sewage, J. B. Petrie 734. Openina Windows Inwardly, A. Cameron,
735gow. Pneumatic Tire for Wherls, J. Robertson
 O'Brien and J. Shearer, Glasgow. OBrien and J. Shearer, Glasgow. 20,738. HaxDLEs for Golf COLUBS, M. R. Cauch 20,739. Atrichagent for Fanliohts, G. F. Newman,
Birmingham. 20,740. Crcle, \&c., Lasprs, C. A. and F. J. Miller, Bi
mingham. mingham.
$20,741$. Lamps
mingham. ${ }_{20}$ ming. Tools for Removina Pnevmatio Tires, A. H.
 44. Brick Carbifr Stacker, \&c., J. Hayes and W.
 Tyler, South America.)
VTELOr Exomes J. Hardill, Halifax.
VELociPEDEs, \&c., S. Gorton, W. Taylor, and VELocipkDEs, \&c., S. Gorton, W. Taylor, and
New Beeston Cyce Company, Coventry,
Pipes for Coolina APPARATUs, A. Konried, nchester.
. Stopperina Bortues, S. Duffield, Glasgow,
LAMPS for Cycles, E. M. Harley, Glasgow. L_sps for Crcces, E. M. Harley, Glasg
Bortses, J. and A. F. Lewis, London.
Brushes, J. Leatherbarrow, Liverpool. BrUBHES, J. Leatherbarrow, Liverpcol.
TrEATMENT of INDA-RUBER, H. Millington H. Parry, Liverpool.
Acruatise sprive-coses Val
and H. Hodgron, Manchester. and H. Hodgson, Manchester.
LUBRICATTNG Composition for
Glasgow.
Corsers, H. Macaulay, Glasgow.
Corserx, H. Macaulay, Glasgow.
SECoriNa Toakter CrANK and Sprocker
Tole 20757. Securino toakther Cranks and Sprocket
Wherl, sc., H. F. Vale and R. J. Fowkes, Bir20,758 Avo. Avomatic Brakes, J. W. Milligan and F. Old-
field, Birmingham. automatic Brakes, J. W. Milligan and F. Old-
Birmingham.
Internal Combugtion Engines, A. W. Southey, London.
20,70. Cork Tires for Bicycless, \&e., M. Twomey,
Cork. ork. Now-slippring Tires for Vehicles, G. C. B.
kinson, London. Wire CuTtErs, G. C. B. Atkinson, London.
Printina Cooours on Sacks, J. G. Kinmond,
P. Kidd, and D. J. MacDonald, Dundee.
 20,765. BEDSTEADS, W. Ort, Glasgow.
20,666. SkELETEN SPEED CHAIN, J. E. Mortis, Breck-
nockshire. nockshire.
0,76 P. Pkevatic Tire for Wheels, J. S. Helyer,
Southsea. Southsca.
0,768 Prooronapic Shutter, G. Houghton and W.
A. Edwards, London. T. E9. Bicycle Foldino Handle Bar, A. Merrick,
Manchester. 20,770. Wresches, C. A. Allison. - (P. Hathavay,
Onited Statcs.) United Statea.)
0.77 M. Mavercture of Saccharine Compounds, H.
Helbing, London. Broaches, \&c., Tools, P. Sancke, London.
Producrion of VAPours of Formic Alderyi A. Trillat, London.
Foldino Bens, E. M. Antisdel, London. Foldiso Beds, E. M. Antisdel, London.
Graters, J. S. Sobey, London.
HIOA-PREssURE Taps for WATER or Steam, . Halli -pressure Taps for Water or Steam, F.
Smandon. Wrist Markers or Scorers, S. Betjemanm,
f.
 Aldworth and J. Shaw, Liverpool.
Manchaps, \&C., C. Parker and J. Meadoweroft, Manchestor.
20,780. A Apraratus for Fire-places, J. J. Roberts, Liver-
pool. ,781. Lubricator, A. Smith, Birmingham. 3. NECKTIEs, E. C. Schoeler, London.
H. MANDLES for Velocipedes, F. W. Ingram and
H. Deag, London.

20,820. Shavino and Similar Brebhes, C. Davies,
Liverpool.
20,821. Whel and Chain, A. J. Reed and A. Lanning,
Dorset. Dorset. Recovery of Hydrochloric Acid, M. N d. Andria, Stretford, Landashire. H. Hamer, Notting. ham. Rotary Tipplers, H. Clark and J. M. Ring.
20,824.
quist, and the firm of Head, Wrightson, and Co., stockton-on-Tees.
$0,825$. Fricrow CuTCH, J. M. Ringquist, H. Clark
and He Hed
 United Statea.)
20,827. COat-sHAPING Maching, S. Taylor, Huddersfield.
20,828. Drawing Corks from Botrles, J. Relf and A. Glover, Liverpool.
0,829 Cons Frezd Machine, T. W. Rees, Cardiff.
0,830 . Beaded Edoe of Cattle Trouehs, S. M. Wil mos.830. Beaded Edee of Cattle Trovohs, S. M. Wil
mot, Bristol. mot, Bristol.
20,831. Fiexible Photooraphic Films, A. P. Okell,
Bowdon. 20,832. Openino Ventilators of Vehicles, C. Brawn, 20,833. Hot ArR Cookino Stove, H. Bennett, Darling 20,884. Coulter for Plouahs, A. Kell and A. Gwillim, Gloucester.
20, 835. STMMPYD WheEls, F. Johnson and D. MeCal.
lum, Cardiff. lam, Cardiff.
land. BRAKEs
for Bicycles, A. A. Hoyle, Bishop Auck37. Strekt Lamps, J. Stewart, London.
38. Regoyery of Metalic Coprer, W. Noad and R. J. Lightfoot, London. C. Mundy, Farnborough,
10, B39. BICYCLE BRAKE, C. Munt Hants. Peterborough.
20,841. Preventing $W_{\text {Afte }}$ Birmingham. $\mathrm{W}_{\text {ATER, }}$ A. B. Milne, 20,842. Cycle Forke, L. Heath and H. P. Tructman Handsworth, Staffs,
20,843 . A New Rallway Sleeper, E. Ruttkoweki, Glasgow.
20,844 . Λ New Inketand, T. Eichhorn, Manchester. 20,845. A Trasway Spike, D. McK. McKinlay, Pol-
mont, N.B. 20,846. Vezsels for Dyeina Purfoses, de., B. Lee, Leds. 848. Slemoh Car Rallway Fire Escape, f. Hale, O.849. Chais with Interchangeable Parts, J. A. and Raynolds, Belfast.
a New PNEumatio Tire, P. Wigleg, Birming-
 Govzanoor for Velocurzozs, B. P. Olsson,

 London.

 Glasgow.
20, se2. Mud Guards for Cycles, E. J. Woodward, London.
20, Fus. Furviure Castors, R. Cartwright, V. E.
James, and J. Jones, London. , and J. Jones, London.
Avtomatic, \&C., METERS, F. M. Stauiton, P ievmatic Tire, G. Wackerbath and C.
Thendon. on.
VEmole Wheris, C. L. Schwarz, London.
HaNDLe Bars for Velociprdes, G. D. Moffatt, London.
C89. Brisono Wines to a Desired Temperature,
C. Fischer, Liverpool.
 20, siverp Coonnansed CLosiso Inkstaxd, H. M. Clark,
 20, ©873. Bexsos, J.J. Perrow, A. J. Newton, and M. King,

Prystall, London Likisa Strock, A. B. yon Hammer

 ${ }_{2}^{20,883 .}$ R. Ren cols

 Lobiso don Door Secuarso Appanatus, P. o. Grifiths,

 20, Sondon Lifzes.avisa Consexusicartioss, A. B. Cunning. 20, ham?, Poxskonamio Triess, R. F. and J. A. Rimmington,

 20,901. Window Show Cases, \&c., A. Vintras,
London. 20,0020. Lunp Mechavisu, P. R. Jackeon and Co. and

22nd September, 1896.

20,904. Disisprecrivo Appantus, R. Goehde and H.

 20, halifax
ham.
hice Wearing Aprarzl, H. Cooper, Notting 20, ham. Mowsinge Cand Clortusa, \boldsymbol{A}. Hitchon,

 ${ }^{20,923}$ Chete Triam

 Leicester.
20,931. Merhod of Advertising, W. B. Ballantine, jun.,
Glasgow. Glaggow.
20, M32. Minupacture of Gutta-percha, F. Fenton,
London. London.
20,93. Cycles, R. S. Deane, Liverpool.
20,934. Artists CANVAs, L. Schmidtand P.S. McMillan,
London. London.
20,93. Transmission of Motion, J. G. A. Kitchen,
Manchester. Manchester.
20,936. Ladre
Tustin, and T. Frole Drest, Coventry. 20,937. PNEMMATIC TIRES, W. Simpson, Birmingham.
20,938. METHo of PrEENTON of BACK DRAVOT in
Hovse FIRE-PLACES, T. Common, Newcastle-uponHoyse Fire-Places, T. Common, Newcastle-upon-
Tyne. Spring Tripe, T. Holmes, W. J. Watson, and
20, 3 , Taylor, Nottingham. 20.940. Adjostabee Index for Readina Rooms, Dr. H.
Wade, Manchester. Wade, Manchester.
20, 0 mi. Becokle Eyelet, J. B. Brooks, jun., Birmingham.
20,942. Becoring Cranks on Cycle Axles, J. A. Ross,
Glasgow.
 20,945. BIICYCles, A. Wex, Halifax. G. Turner, Penrith
20,946. Disposal of WATER, J. V. Chitty and C. Provis,
Emsworth. Emsworth.
20,947. Tres, G. Lamb. London.
20,948. Crek Brakes, E. Bailey a
Bridgford.
20,949. Sprocket Wherls, J. Doherty, Birmingham.
20,950. WATCH and BELL, J. L. Reynolds and F. C.
White, Birmingham. White, Birmingham.
20,951. AvTo-CAR Drivina GEAR, W. S. Ross and W.
Alexander, Glasgow. A0,95x. STEMA Traps, A. Bradshaw, Accrington,
20,953. Embrocation for the Cure of Gout, I. Ortman London.
20,955. Pillars, E. Thylor, Birmingham.
Birch,
B. Corteen, A. H. Airmingham. Adcock, and J Birch, Birmingham.
20,956. Pnevunutic Tires for Cycles, T. F. A. Ash,
Birmingham. Birmingham.
Bist, PosTaL Wrapper, G. Barnes and F. P. Stevens,
Birmingham.
0.958. Fixima Tires to Rims of Wheris, E. C. Wild, Birmingham. Tires to Rims of Wherls, E. C. Wild,
20,958. Finive
London. 20,959. Vuleanising Apparatus, P. J. Davis, London.
20,960. Cleaning Fibres of Plants, C. Junge.-(8 . B. Allison, United Ftates.) of Plants, C. Junge.-(s. B.
20.961. ELecric Laspe, J. T. Lister and W. S. Chamber-
lain, London. 20,961. Elegctric Laspe, J. T. Lister and W.S. Chamber-
1ain, London.
20962. Electric Railways, J. T. Rossiter and the

British
Londectric 20.963. Swirtches. J. T. Rossiter and the British Elec tric Traction (Pionoer) Company, Lh., London. C.964. Curekx Courcconse, J. T. Rossititor and the
British Electric Traction (Pioneer) Company, Ld. British
Lrindoctric Traction (Pioneer) Company, Ld.
London. London.
20,95. Lon.
London. London.
 London.
0,968 . Furxaces, A. F. Kingsley, Lond , $\xrightarrow{\text { Lond on }}$, i. Edmunds London.
$20,971$. Pu
Germaotorraphic Camera, R. Daeschner, Cologne, Germany.
20,973. PAopelanvo Vessers, G. W. Price, London. 20,h74. WA. $\begin{gathered}\text { chterproof FABRICs, L. Frankenstein, Man- }\end{gathered}$ 20,955. DEscoration of Pottrery, \&c., C. Mountford, Lo.7ndon. ARTIST' EAsels or Sketchiva Rests, A. H.
Holilind Shefield 20,977. Drivino Lastino Taoks, H. H. Lake.-(E. B.

 (N. Teela, United States.) 20,983. RALLIWAY PERMANENT WAY, J. M. Spaulding Lond.n.
20,984. ELEcric Brakes, The British Thomson
Houston Company, LD. States.
00.985 . C Londo Cycle and Vehiole Wheels, G. v. de Luca, London. CHainless Crclus,
Gerstendōrfer, London.
Gerrtendōrfer, Londens, L. Oberhammer and M. 20.987. MRLABLE SPEED GEAß, L. Oberhammer and
M. Gerstendörfer, London. 20.998. STLTALE for Supporting Carnations, A. Porter,
London. London.
20.9ss.
London 20,900. AD London. Johnston, London.
20992 20,992. Method of Mountiva Lncandescesce Mantues
on GAs-bunvers, H. H. Lake.-(W. H. A. Siecertss
 L.ondon
20.994. Waterproor Broycle Case, E. W. Toulmin London.
20,995. Boor Trers . H. R. Bridson, London.
20,966. GAs STove. F. H. Dasisworth, London

 21,0ond. Reprodection of Picturgs, \&c., J. H. Player,

 21.005. Bortre-rilinga Machines, R. J. Cousins, J. w.
Flower, and A. P. Prout, London. Flower, and A. P. Prout, London.
21,006. BEAT SUYPorrs of CHARR, P. Jensen.-(Gilson
 Forsyth and E. T. Bell, London.
21,008 . Cicatures M. Gaffy, Londo
 21,010. FIMTRSQ for WINE
 Jacquemin, London, Suver from OBes, G. E.
21,012. ExTRACTIos of Suve 21,012. Extraction of Sluver from Ores, A. J. C
Nettel. London 21,013. FURNITURE Castors, w. T. Reay, London.
21,014. Domestric Turkise Bath,
tc.,
T. Thomas Li, London. Method of Eximbitiva Photos, C. H. Daniell

 Li,ondin. CAN Oprsers, J. A. Haskett, London.
21, O22. TREATING MALT Lievors, \&c., A. E. Feroe

 21, O25. Cowsectisg Ruius, A. E. Woodhouse.-(J. S
 21,027. Electrootvsis, W. L. Wise.-(The Aluminiun

23rd September, 1896.
21,032. Bundss for Carriage Windows, L. Lantheaume, London.
21,033. Cleanivg Frutr
,ion
J. Parnall and Parnall and
ard
 21,035. CYCLE STANDS, w. H. Harvey, London.
21, OB6. RUDER FRAMEs, F. S. Cormier and L. W.
 London,
21,038. Recovery of GoLD and SILver, W. Douglas,
Glasgow. 21
21
22
22
22
2
21
21
21
2
2
2
2
2
2
2

21,052. Bacon Suspender and Advertiser, J. Wynn 21,053. Friction Clutches, N. Macbeth, Manchester.
21,054. Cookina RANoEs and Fireplaces, J. Hardie, Manchester.
21, O55. ELETrRic Firtrivas, E. J. J. Piper, London.
 1,0058. Lamp Retlectos, J. H. Fletcher, Derbyshire. 21,059. Bicrcle Tress, E. W. Hughes, London.
21,060. CLeANINO FILERINO MATERIAL, A. P. Hope, salford
$1,061$. Disinyector for Strebt Manholess, \&c., A. P. Hope. Salford.
11,062 . Varuble Serd Gear, A. J. Drake and J. S.
 21,064. AUTOMATIC Dove
Graham, Manchester.
21,065. CLERANINo Sturt-rons, H. Dade, Essex.
21,06. Hatr-priss, W. H. Cole, Birmingham.
21,067. ATTACHIN TABLE Tops to the FRAME, P. Daw
 London. 1, o69. Cors.-FREED GAs Merkrs, H. and C. Gamwell
and J. and J. Lind, Liverrool.

21,071. INDICATINo the Form of Compertiors in
RAciso, T. Dykes, London.

${ }_{21,977}^{11}$ Detachable Cycle Mudevard, c. D. Weekes, Dublin.
21,07. Rod and Bracket Support, G. C. Lidstone, 21,079. RULLE, F. Rowly, Manchester-
21,0s0. BRKER, J. J. Mennell, M. Brooks mond London.
mi,osi. PRoobucing 1,081. Prodveina Photoaraprs, J. Slater, Man
chester.

SBLECTED AMERICAN PATENTS.

 From the United States Patent Offce Official Gaztle. Claim.-(1) The combination with a steam cylinder
and piston, of a steam passage connecting the cylinder ends on opposite sides of the piston, a valve mechan
sm controling said passage and under a constan pressure less than the steam pressure on the admise
sion sideo of tho piston temdivg to cose the passage,
and normall closing the passage during the strove,

piston, substantially as described. (2) The combina steam passage a steam chough itinder and piston having a
alves controlling gaid passage, said valves operating independently and
pening from the opposite ends of the cylinder and seated by a constant pressure less than the steam
pressure on the admission side of the piston, and pressure on the admission side of the piston, and
means for onening the tralve the exhaust side of
the piston at the desired point in the movement of means or opening the valve on the the the
the piston at the substantially as described.
the piston,
561,774. Gse Exolive , G. F. Eggerdinger and G. R Claim-In angas engine of the character described, Claim- 1 na ase engine of the character described,
the oombination with the inders A, of the value
mechanism consisting of the valve body K having mechanism consisting of the valve body K having
port k leading into the cylinders, chambered exten-

valve K, suetion inlet port K^{2} and exhaust port k^{s},
valve stems K^{5}, levers O, O, fulcrumed to hanger
 hanger m and in mesh with the pinion, stud.pin N on
said gaer M nll constructed and adapted to operate
substantinly ys described. 561,997. Moron Vkricle, A. H. Konnely, Rockport
Ind.- Filed December 20th, iso5. Claim- - (1) In Combination, a road vehicle having a
rigid rear axde provided with carrying wheels,

nent comprising driving wheels, a supporting frame
herefor, floxible comnections between the moter therefor, fixibibe connections between ene motor
frame and the frame of the evicle, an engine on the motor frame, and mechanical connections betwee the engine and the driving wheels of the motor. (2)
The combination with an ordinary road vehicle The combination with an ordinary road venite
having front and rear wheels, and a hand stering gear connected with the front whels, of a spparate
motor attachment located in the rear of the vehiclo motor attachment located in the rear of the vericlo
and pivotally connected with the frame theroof, said

561.997

motor attachment comprising diriving whels,
supporting frame therefor, flexible connections supporting trame thererer fre the the frame of the
between the
vehicle an engine on the motor frame, mechanical vehicle, an engine on the motor frame, mechanical
connections between the engine and the driving
 ongine of the motor.
562,039. Outuir Valve for Stean Exarnss, W. 28th, 1894 . a main exhaust port situated soas to become uncovered y the piston at one end of its stroke, of an auxiliary piston near the other end of its stroke; a valve
adapted to close the outer end of said nuuxiliary port, linder, and compressed by the said piston after the Itter has covered the inner end of the eaid auxiliary

562,039.

port ; and a spring tending to keep said valve con-
stantly open, for the purpose as described. (2) In a
that steam engine, the combination with a main exhaust
port situated so as to beoome uncovered by the piston at one end of its stroke, of an auxiliary yexhaust port
situated so as to become covered by said piston near situated so as to become covered by said piston near
the other end of its stroke; a a piston-ike valve adapted
 operated dy the steam remaining within the celininer,
and tompressed by the said piston after the latter has
corered the inner end of the said auxililiny portt and and cocered thesesinner end of the said auxiliary port, and
a spring tending to keep said valve constantly open, for the purpose as described.
 Claim.- (1) The combination, with two pivoted
handlo levers, of which one is provided with a lateral
wing having a wing, having a longitudinal groove and a transverse
groove in its upper service, a socket extending groove in its upper service, a socket extending
upwards from the other lever, a blade mounted too
move lengthwise in said socket and a spring in said

socket for pressing the blade downward with a yield-
ing pressure, substantially as herein shown and described. (2) The combination with two pivoted handle levers, of a blade held in one and a wing on
the other, which wing has a longitudinal and a ransverse groove, crossing each other at right angles
in the upper service of said wing, and rollers mounted in slots of the longitudinal groove, substantially as
herein shown and described.
herein shown and described.
562, 164. Hydraunc Air Pump, E. H. Weatherhead,
Cleveland, Ohio.-Filed July 26th, 1895. Claim.-(1) The main casing having an inlet port
with an ejector nozzle and an outlet port below
the inlet port, a valve seoat between said
ports and a valve formed with a circular portion
to extend within said valve seat and having a
lateral flange beneath said circular portion, substan-

[862,100

tially as set forth (2) In a hydraulic air pumr, a
cassing having a valve seat around about its inside wall and a water inlet on one side of said seat and a
water outlet on the other side, a main valve constructed to enter said valve seat, and close the passage,
and an ejector nozzle in the water inlet forming a water and an jector nozzle in the water inlet forming a
poasag from natid inte and pointed to the dire
of the water outlet, subtastantionly tas set forth.

